btrfs-progs/cmds/scrub.c
Ivan Kozik ec3c842859 btrfs-progs: scrub status: with --si, show rate in metric units
This makes btrfs scrub status --si show the Rate in metric units as well.

Before:

Total to scrub:   877.65GB
Rate:             609.22MiB/s

After:

Total to scrub:   877.65GB
Rate:             638.81MB/s

Pull-request: #832
Author: Ivan Kozik <ivan@ludios.org>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-30 19:53:32 +02:00

2195 lines
55 KiB
C

/*
* Copyright (C) 2011 STRATO. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include "kerncompat.h"
#include <sys/ioctl.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <sys/file.h>
#include <sys/time.h>
#include <poll.h>
#include <fcntl.h>
#include <unistd.h>
#include <pthread.h>
#include <ctype.h>
#include <signal.h>
#include <stdarg.h>
#include <limits.h>
#include <dirent.h>
#include <getopt.h>
#include <errno.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <syscall.h>
#include <time.h>
#include <uuid/uuid.h>
#include "kernel-lib/sizes.h"
#include "kernel-shared/volumes.h"
#include "common/defs.h"
#include "common/messages.h"
#include "common/utils.h"
#include "common/open-utils.h"
#include "common/units.h"
#include "common/device-utils.h"
#include "common/parse-utils.h"
#include "common/sysfs-utils.h"
#include "common/string-table.h"
#include "common/string-utils.h"
#include "common/parse-utils.h"
#include "common/help.h"
#include "cmds/commands.h"
static unsigned unit_mode = UNITS_DEFAULT;
static const char * const scrub_cmd_group_usage[] = {
"btrfs scrub <command> [options] <path>|<device>",
NULL
};
#define SCRUB_DATA_FILE "/var/lib/btrfs/scrub.status"
#define SCRUB_PROGRESS_SOCKET_PATH "/var/lib/btrfs/scrub.progress"
#define SCRUB_FILE_VERSION_PREFIX "scrub status"
#define SCRUB_FILE_VERSION "1"
struct scrub_stats {
time_t t_start;
time_t t_resumed;
u64 duration;
u64 finished;
u64 canceled;
int in_progress;
};
/* TBD: replace with #include "linux/ioprio.h" in some years */
#if !defined (IOPRIO_H)
#define IOPRIO_WHO_PROCESS 1
#define IOPRIO_CLASS_SHIFT 13
#define IOPRIO_PRIO_VALUE(class, data) \
(((class) << IOPRIO_CLASS_SHIFT) | (data))
#define IOPRIO_CLASS_IDLE 3
#endif
struct scrub_progress {
struct btrfs_ioctl_scrub_args scrub_args;
int fd;
int ret;
int skip;
struct scrub_stats stats;
struct scrub_file_record *resumed;
int ioctl_errno;
pthread_mutex_t progress_mutex;
int ioprio_class;
int ioprio_classdata;
u64 limit;
};
struct scrub_file_record {
u8 fsid[BTRFS_FSID_SIZE];
u64 devid;
struct scrub_stats stats;
struct btrfs_scrub_progress p;
};
struct scrub_progress_cycle {
int fdmnt;
int prg_fd;
int do_record;
struct btrfs_ioctl_fs_info_args *fi;
struct scrub_progress *progress;
struct scrub_progress *shared_progress;
pthread_mutex_t *write_mutex;
};
struct scrub_fs_stat {
struct btrfs_scrub_progress p;
struct scrub_stats s;
int i;
};
static void print_scrub_full(struct btrfs_scrub_progress *sp)
{
pr_verbose(LOG_DEFAULT, "\tdata_extents_scrubbed: %lld\n", sp->data_extents_scrubbed);
pr_verbose(LOG_DEFAULT, "\ttree_extents_scrubbed: %lld\n", sp->tree_extents_scrubbed);
pr_verbose(LOG_DEFAULT, "\tdata_bytes_scrubbed: %lld\n", sp->data_bytes_scrubbed);
pr_verbose(LOG_DEFAULT, "\ttree_bytes_scrubbed: %lld\n", sp->tree_bytes_scrubbed);
pr_verbose(LOG_DEFAULT, "\tread_errors: %lld\n", sp->read_errors);
pr_verbose(LOG_DEFAULT, "\tcsum_errors: %lld\n", sp->csum_errors);
pr_verbose(LOG_DEFAULT, "\tverify_errors: %lld\n", sp->verify_errors);
pr_verbose(LOG_DEFAULT, "\tno_csum: %lld\n", sp->no_csum);
pr_verbose(LOG_DEFAULT, "\tcsum_discards: %lld\n", sp->csum_discards);
pr_verbose(LOG_DEFAULT, "\tsuper_errors: %lld\n", sp->super_errors);
pr_verbose(LOG_DEFAULT, "\tmalloc_errors: %lld\n", sp->malloc_errors);
pr_verbose(LOG_DEFAULT, "\tuncorrectable_errors: %lld\n", sp->uncorrectable_errors);
pr_verbose(LOG_DEFAULT, "\tunverified_errors: %lld\n", sp->unverified_errors);
pr_verbose(LOG_DEFAULT, "\tcorrected_errors: %lld\n", sp->corrected_errors);
pr_verbose(LOG_DEFAULT, "\tlast_physical: %lld\n", sp->last_physical);
}
#define PRINT_SCRUB_ERROR(test, desc) do { \
if (test) \
pr_verbose(LOG_DEFAULT, " %s=%llu", desc, test); \
} while (0)
static void print_scrub_summary(struct btrfs_scrub_progress *p, struct scrub_stats *s,
u64 bytes_total, u64 limit)
{
u64 err_cnt;
u64 err_cnt2;
u64 bytes_scrubbed;
u64 bytes_per_sec = 0;
u64 sec_left = 0;
time_t sec_eta;
bytes_scrubbed = p->data_bytes_scrubbed + p->tree_bytes_scrubbed;
/*
* If duration is zero seconds (rounded down), then the Rate metric
* should still reflect the amount of bytes that have been processed
* in under a second.
*/
if (s->duration == 0)
bytes_per_sec = bytes_scrubbed;
else
bytes_per_sec = bytes_scrubbed / s->duration;
if (bytes_per_sec > 0)
sec_left = (bytes_total - bytes_scrubbed) / bytes_per_sec;
err_cnt = p->read_errors +
p->csum_errors +
p->verify_errors +
p->super_errors;
err_cnt2 = p->corrected_errors + p->uncorrectable_errors;
if (p->malloc_errors)
pr_verbose(LOG_DEFAULT, "*** WARNING: memory allocation failed while scrubbing. "
"results may be inaccurate\n");
if (s->in_progress) {
char t[4096];
struct tm tm;
sec_eta = time(NULL);
sec_eta += sec_left;
localtime_r(&sec_eta, &tm);
t[sizeof(t) - 1] = '\0';
strftime(t, sizeof(t), "%c", &tm);
pr_verbose(LOG_DEFAULT, "Time left: %llu:%02llu:%02llu\n",
sec_left / 3600, (sec_left / 60) % 60, sec_left % 60);
pr_verbose(LOG_DEFAULT, "ETA: %s\n", t);
pr_verbose(LOG_DEFAULT, "Total to scrub: %s\n",
pretty_size_mode(bytes_total, unit_mode));
pr_verbose(LOG_DEFAULT, "Bytes scrubbed: %s (%.2f%%)\n",
pretty_size_mode(bytes_scrubbed, unit_mode),
100.0 * bytes_scrubbed / bytes_total);
} else {
pr_verbose(LOG_DEFAULT, "Total to scrub: %s\n",
pretty_size_mode(bytes_total, unit_mode));
}
/*
* Rate and size units are disproportionate so they are affected only
* by --raw, otherwise it's human readable
*/
if (unit_mode == UNITS_RAW) {
pr_verbose(LOG_DEFAULT, "Rate: %s/s",
pretty_size_mode(bytes_per_sec, UNITS_RAW));
if (limit > 1)
pr_verbose(LOG_DEFAULT, " (limit %s/s)",
pretty_size_mode(limit, UNITS_RAW));
else if (limit == 1)
pr_verbose(LOG_DEFAULT, " (some device limits set)");
pr_verbose(LOG_DEFAULT, "\n");
} else {
pr_verbose(LOG_DEFAULT, "Rate: %s/s",
pretty_size_mode(bytes_per_sec, unit_mode));
if (limit > 1)
pr_verbose(LOG_DEFAULT, " (limit %s/s)",
pretty_size_mode(limit, unit_mode));
else if (limit == 1)
pr_verbose(LOG_DEFAULT, " (some device limits set)");
pr_verbose(LOG_DEFAULT, "\n");
}
pr_verbose(LOG_DEFAULT, "Error summary: ");
if (err_cnt || err_cnt2) {
PRINT_SCRUB_ERROR(p->read_errors, "read");
PRINT_SCRUB_ERROR(p->super_errors, "super");
PRINT_SCRUB_ERROR(p->verify_errors, "verify");
PRINT_SCRUB_ERROR(p->csum_errors, "csum");
pr_verbose(LOG_DEFAULT, "\n");
pr_verbose(LOG_DEFAULT, " Corrected: %llu\n", p->corrected_errors);
pr_verbose(LOG_DEFAULT, " Uncorrectable: %llu\n", p->uncorrectable_errors);
pr_verbose(LOG_DEFAULT, " Unverified: %llu\n", p->unverified_errors);
} else {
pr_verbose(LOG_DEFAULT, " no errors found\n");
}
}
#define _SCRUB_FS_STAT(p, name, fs_stat) do { \
fs_stat->p.name += p->name; \
} while (0)
#define _SCRUB_FS_STAT_COPY(p, name, fs_stat) do { \
fs_stat->p.name = p->name; \
} while (0)
#define _SCRUB_FS_STAT_MIN(ss, name, fs_stat) \
do { \
if (fs_stat->s.name > ss->name) { \
fs_stat->s.name = ss->name; \
} \
} while (0)
#define _SCRUB_FS_STAT_ZMIN(ss, name, fs_stat) \
do { \
if (!fs_stat->s.name || fs_stat->s.name > ss->name) { \
fs_stat->s.name = ss->name; \
} \
} while (0)
#define _SCRUB_FS_STAT_ZMAX(ss, name, fs_stat) \
do { \
if (!(fs_stat)->s.name || (fs_stat)->s.name < (ss)->name) { \
(fs_stat)->s.name = (ss)->name; \
} \
} while (0)
static void add_to_fs_stat(struct btrfs_scrub_progress *p,
struct scrub_stats *ss,
struct scrub_fs_stat *fs_stat)
{
_SCRUB_FS_STAT(p, data_extents_scrubbed, fs_stat);
_SCRUB_FS_STAT(p, tree_extents_scrubbed, fs_stat);
_SCRUB_FS_STAT(p, data_bytes_scrubbed, fs_stat);
_SCRUB_FS_STAT(p, tree_bytes_scrubbed, fs_stat);
_SCRUB_FS_STAT(p, read_errors, fs_stat);
_SCRUB_FS_STAT(p, csum_errors, fs_stat);
_SCRUB_FS_STAT(p, verify_errors, fs_stat);
_SCRUB_FS_STAT(p, no_csum, fs_stat);
_SCRUB_FS_STAT(p, csum_discards, fs_stat);
_SCRUB_FS_STAT(p, super_errors, fs_stat);
_SCRUB_FS_STAT(p, malloc_errors, fs_stat);
_SCRUB_FS_STAT(p, uncorrectable_errors, fs_stat);
_SCRUB_FS_STAT(p, corrected_errors, fs_stat);
_SCRUB_FS_STAT_COPY(p, last_physical, fs_stat);
_SCRUB_FS_STAT_ZMIN(ss, t_start, fs_stat);
_SCRUB_FS_STAT_ZMIN(ss, t_resumed, fs_stat);
_SCRUB_FS_STAT_ZMAX(ss, duration, fs_stat);
_SCRUB_FS_STAT_ZMAX(ss, canceled, fs_stat);
_SCRUB_FS_STAT_MIN(ss, finished, fs_stat);
}
static void init_fs_stat(struct scrub_fs_stat *fs_stat)
{
memset(fs_stat, 0, sizeof(*fs_stat));
fs_stat->s.finished = 1;
}
static void _print_scrub_ss(struct scrub_stats *ss)
{
char t[4096];
struct tm tm;
time_t seconds;
unsigned hours;
if (!ss || !ss->t_start) {
pr_verbose(LOG_DEFAULT, "\tno stats available\n");
return;
}
if (ss->t_resumed) {
localtime_r(&ss->t_resumed, &tm);
strftime(t, sizeof(t), "%c", &tm);
t[sizeof(t) - 1] = '\0';
pr_verbose(LOG_DEFAULT, "Scrub resumed: %s\n", t);
} else {
localtime_r(&ss->t_start, &tm);
strftime(t, sizeof(t), "%c", &tm);
t[sizeof(t) - 1] = '\0';
pr_verbose(LOG_DEFAULT, "Scrub started: %s\n", t);
}
seconds = ss->duration;
hours = ss->duration / (60 * 60);
gmtime_r(&seconds, &tm);
strftime(t, sizeof(t), "%M:%S", &tm);
pr_verbose(LOG_DEFAULT, "Status: %s\n",
(ss->in_progress ? "running" :
(ss->canceled ? "aborted" :
(ss->finished ? "finished" : "interrupted"))));
pr_verbose(LOG_DEFAULT, "Duration: %u:%s\n", hours, t);
}
static void print_scrub_dev(struct btrfs_ioctl_dev_info_args *di,
struct btrfs_scrub_progress *p, int raw,
const char *append, struct scrub_stats *ss,
u64 limit)
{
pr_verbose(LOG_DEFAULT, "\nScrub device %s (id %llu) %s\n", di->path, di->devid,
append ? append : "");
_print_scrub_ss(ss);
if (p) {
if (raw) {
print_scrub_full(p);
} else if (ss->finished) {
/*
* For finished scrub, we can use the total scrubbed
* bytes to report "Total to scrub", which is more
* accurate (e.g. mostly empty block groups).
*/
print_scrub_summary(p, ss, p->data_bytes_scrubbed +
p->tree_bytes_scrubbed, limit);
} else {
/*
* For any canceled/interrupted/running scrub, we're
* not sure how many bytes we're really going to scrub,
* thus we use device's used bytes instead.
*/
print_scrub_summary(p, ss, di->bytes_used, limit);
}
}
}
/*
* Print summary stats for the whole filesystem. If there's only one device
* print the limit if set, otherwise a special value to print a note that
* limits are set.
*/
static void print_fs_stat(struct scrub_fs_stat *fs_stat, int raw, u64 bytes_total,
u64 nr_devices, u64 limit)
{
_print_scrub_ss(&fs_stat->s);
if (raw) {
print_scrub_full(&fs_stat->p);
} else {
/*
* Limit for the whole filesystem stats does not make sense,
* but if there's any device with a limit then print it.
*/
if (nr_devices != 1 && limit)
limit = 1;
print_scrub_summary(&fs_stat->p, &fs_stat->s, bytes_total, limit);
}
}
static void free_history(struct scrub_file_record **last_scrubs)
{
struct scrub_file_record **l = last_scrubs;
if (!l || IS_ERR(l))
return;
while (*l)
free(*l++);
free(last_scrubs);
}
/*
* cancels a running scrub and makes the master process record the current
* progress status before exiting.
*/
static int cancel_fd = -1;
static void scrub_sigint_record_progress(int signal)
{
int ret;
ret = ioctl(cancel_fd, BTRFS_IOC_SCRUB_CANCEL, NULL);
if (ret < 0)
perror("Scrub cancel failed");
}
static int scrub_handle_sigint_parent(void)
{
struct sigaction sa = {
.sa_handler = SIG_IGN,
.sa_flags = SA_RESTART,
};
return sigaction(SIGINT, &sa, NULL);
}
static int scrub_handle_sigint_child(int fd)
{
struct sigaction sa = {
.sa_handler = fd == -1 ? SIG_DFL : scrub_sigint_record_progress,
};
cancel_fd = fd;
return sigaction(SIGINT, &sa, NULL);
}
static int scrub_datafile(const char *fn_base, const char *fn_local,
const char *fn_tmp, char *datafile, int size)
{
int ret;
int end = size - 2;
datafile[end + 1] = '\0';
strncpy(datafile, fn_base, end);
ret = strlen(datafile);
if (ret + 1 > end)
return -EOVERFLOW;
datafile[ret] = '.';
strncpy(datafile + ret + 1, fn_local, end - ret - 1);
ret = strlen(datafile);
if (ret + 1 > end)
return -EOVERFLOW;
if (fn_tmp) {
datafile[ret] = '_';
strncpy(datafile + ret + 1, fn_tmp, end - ret - 1);
ret = strlen(datafile);
if (ret > end)
return -EOVERFLOW;
}
return 0;
}
static int scrub_open_file(const char *datafile, int m)
{
int fd;
int ret;
fd = open(datafile, m, 0600);
if (fd < 0)
return -errno;
ret = flock(fd, LOCK_EX|LOCK_NB);
if (ret) {
ret = errno;
close(fd);
return -ret;
}
return fd;
}
static int scrub_open_file_r(const char *fn_base, const char *fn_local)
{
int ret;
char datafile[PATH_MAX];
ret = scrub_datafile(fn_base, fn_local, NULL,
datafile, sizeof(datafile));
if (ret < 0)
return ret;
return scrub_open_file(datafile, O_RDONLY);
}
static int scrub_open_file_w(const char *fn_base, const char *fn_local,
const char *tmp)
{
int ret;
char datafile[PATH_MAX];
ret = scrub_datafile(fn_base, fn_local, tmp,
datafile, sizeof(datafile));
if (ret < 0)
return ret;
return scrub_open_file(datafile, O_WRONLY|O_CREAT);
}
static int scrub_rename_file(const char *fn_base, const char *fn_local,
const char *tmp)
{
int ret;
char datafile_old[PATH_MAX];
char datafile_new[PATH_MAX];
ret = scrub_datafile(fn_base, fn_local, tmp,
datafile_old, sizeof(datafile_old));
if (ret < 0)
return ret;
ret = scrub_datafile(fn_base, fn_local, NULL,
datafile_new, sizeof(datafile_new));
if (ret < 0)
return ret;
ret = rename(datafile_old, datafile_new);
return ret ? -errno : 0;
}
#define _SCRUB_KVREAD(ret, i, name, avail, l, dest) if (ret == 0) { \
ret = scrub_kvread(i, sizeof(#name), avail, l, #name, dest.name); \
}
/*
* returns 0 if the key did not match (nothing was read)
* 1 if the key did match (success)
* -1 if the key did match and an error occurred
*/
static int scrub_kvread(int *i, int len, int avail, const char *buf,
const char *key, u64 *dest)
{
int j;
if (*i + len + 1 < avail && strncmp(&buf[*i], key, len - 1) == 0) {
*i += len - 1;
if (buf[*i] != ':')
return -1;
*i += 1;
for (j = 0; isdigit(buf[*i + j]) && *i + j < avail; ++j)
;
if (*i + j >= avail)
return -1;
*dest = atoll(&buf[*i]);
*i += j;
return 1;
}
return 0;
}
#define _SCRUB_INVALID do { \
if (report_errors) \
warning("invalid data on line %d pos " \
"%d state %d (near \"%.*s\") at %s:%d", \
lineno, i, state, 20 > avail ? avail : 20, \
l + i, __FILE__, __LINE__); \
goto skip; \
} while (0)
static struct scrub_file_record **scrub_read_file(int fd, int report_errors)
{
int avail = 0;
int old_avail = 0;
char l[SZ_16K];
int state = 0;
int curr = -1;
int i = 0;
int j;
int ret;
bool eof = false;
int lineno = 0;
u64 version;
char empty_uuid[BTRFS_FSID_SIZE] = {0};
struct scrub_file_record **p = NULL;
again:
old_avail = avail - i;
if (old_avail < 0) {
error("scrub record file corrupted near byte %d", i);
return ERR_PTR(-EINVAL);
}
if (old_avail)
memmove(l, l + i, old_avail);
avail = read(fd, l + old_avail, sizeof(l) - old_avail);
if (avail == 0)
eof = true;
if (avail == 0 && old_avail == 0) {
if (curr >= 0 &&
memcmp(p[curr]->fsid, empty_uuid, BTRFS_FSID_SIZE) == 0) {
p[curr] = NULL;
} else if (curr == -1) {
p = ERR_PTR(-ENODATA);
}
return p;
}
if (avail == -1) {
free_history(p);
return ERR_PTR(-errno);
}
avail += old_avail;
i = 0;
while (i < avail) {
void *tmp;
switch (state) {
case 0: /* start of file */
ret = scrub_kvread(&i,
sizeof(SCRUB_FILE_VERSION_PREFIX), avail, l,
SCRUB_FILE_VERSION_PREFIX, &version);
if (ret != 1)
_SCRUB_INVALID;
if (version != atoll(SCRUB_FILE_VERSION))
return ERR_PTR(-ENOTSUP);
state = 6;
continue;
case 1: /* start of line, alloc */
/*
* this state makes sure we have a complete line in
* further processing, so we don't need wrap-tracking
* everywhere.
*/
if (!eof && !memchr(l + i, '\n', avail - i))
goto again;
++lineno;
if (curr > -1 && memcmp(p[curr]->fsid, empty_uuid,
BTRFS_FSID_SIZE) == 0) {
state = 2;
continue;
}
++curr;
tmp = p;
p = realloc(p, (curr + 2) * sizeof(*p));
if (!p) {
free_history(tmp);
return ERR_PTR(-errno);
}
p[curr] = malloc(sizeof(**p));
if (!p[curr]) {
free_history(p);
return ERR_PTR(-errno);
}
memset(p[curr], 0, sizeof(**p));
p[curr + 1] = NULL;
++state;
fallthrough;
case 2: /* start of line, skip space */
while (isspace(l[i]) && i < avail) {
if (l[i] == '\n')
++lineno;
++i;
}
if (i >= avail ||
(!eof && !memchr(l + i, '\n', avail - i)))
goto again;
++state;
fallthrough;
case 3: /* read fsid */
if (i == avail)
continue;
for (j = 0; l[i + j] != ':' && i + j < avail; ++j)
;
if (i + j + 1 >= avail)
_SCRUB_INVALID;
if (j != BTRFS_UUID_UNPARSED_SIZE - 1)
_SCRUB_INVALID;
l[i + j] = '\0';
ret = uuid_parse(l + i, p[curr]->fsid);
if (ret)
_SCRUB_INVALID;
i += j + 1;
++state;
fallthrough;
case 4: /* read dev id */
for (j = 0; isdigit(l[i + j]) && i+j < avail; ++j)
;
if (j == 0 || i + j + 1 >= avail)
_SCRUB_INVALID;
p[curr]->devid = atoll(&l[i]);
i += j + 1;
++state;
fallthrough;
case 5: /* read key/value pair */
ret = 0;
_SCRUB_KVREAD(ret, &i, data_extents_scrubbed, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, tree_extents_scrubbed, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, data_bytes_scrubbed, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, tree_bytes_scrubbed, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, read_errors, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, csum_errors, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, verify_errors, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, no_csum, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, csum_discards, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, super_errors, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, malloc_errors, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, uncorrectable_errors, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, corrected_errors, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, last_physical, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, finished, avail, l,
&p[curr]->stats);
_SCRUB_KVREAD(ret, &i, t_start, avail, l,
(u64 *)&p[curr]->stats);
_SCRUB_KVREAD(ret, &i, t_resumed, avail, l,
(u64 *)&p[curr]->stats);
_SCRUB_KVREAD(ret, &i, duration, avail, l,
(u64 *)&p[curr]->stats);
_SCRUB_KVREAD(ret, &i, canceled, avail, l,
&p[curr]->stats);
if (ret != 1)
_SCRUB_INVALID;
++state;
fallthrough;
case 6: /* after number */
if (l[i] == '|')
state = 5;
else if (l[i] == '\n')
state = 1;
else
_SCRUB_INVALID;
++i;
continue;
case 99: /* skip rest of line */
skip:
state = 99;
do {
++i;
if (l[i - 1] == '\n') {
state = 1;
break;
}
} while (i < avail);
continue;
}
error("internal error: unknown parser state %d near byte %d",
state, i);
return ERR_PTR(-EINVAL);
}
goto again;
}
static int scrub_write_buf(int fd, const void *data, int len)
{
int ret;
ret = write(fd, data, len);
return ret - len;
}
static int scrub_writev(int fd, char *buf, int max, const char *fmt, ...)
__attribute__ ((format (printf, 4, 5)));
static int scrub_writev(int fd, char *buf, int max, const char *fmt, ...)
{
int ret;
va_list args;
va_start(args, fmt);
ret = vsnprintf(buf, max, fmt, args);
va_end(args);
if (ret >= max)
return ret - max;
return scrub_write_buf(fd, buf, ret);
}
#define _SCRUB_SUM(dest, data, name) dest->scrub_args.progress.name = \
data->resumed->p.name + data->scrub_args.progress.name
#define _SCRUB_COPY(dest, data, name) dest->scrub_args.progress.name = \
data->scrub_args.progress.name
static struct scrub_progress *scrub_resumed_stats(struct scrub_progress *data,
struct scrub_progress *dest)
{
if (!data->resumed || data->skip)
return data;
_SCRUB_SUM(dest, data, data_extents_scrubbed);
_SCRUB_SUM(dest, data, tree_extents_scrubbed);
_SCRUB_SUM(dest, data, data_bytes_scrubbed);
_SCRUB_SUM(dest, data, tree_bytes_scrubbed);
_SCRUB_SUM(dest, data, read_errors);
_SCRUB_SUM(dest, data, csum_errors);
_SCRUB_SUM(dest, data, verify_errors);
_SCRUB_SUM(dest, data, no_csum);
_SCRUB_SUM(dest, data, csum_discards);
_SCRUB_SUM(dest, data, super_errors);
_SCRUB_SUM(dest, data, malloc_errors);
_SCRUB_SUM(dest, data, uncorrectable_errors);
_SCRUB_SUM(dest, data, corrected_errors);
_SCRUB_COPY(dest, data, last_physical);
dest->stats.canceled = data->stats.canceled;
dest->stats.finished = data->stats.finished;
dest->stats.t_resumed = data->stats.t_start;
dest->stats.t_start = data->resumed->stats.t_start;
dest->stats.duration = data->resumed->stats.duration +
data->stats.duration;
dest->scrub_args.devid = data->scrub_args.devid;
return dest;
}
#define _SCRUB_KVWRITE(fd, buf, name, use) \
scrub_kvwrite(fd, buf, sizeof(buf), #name, \
use->scrub_args.progress.name)
#define _SCRUB_KVWRITE_STATS(fd, buf, name, use) \
scrub_kvwrite(fd, buf, sizeof(buf), #name, \
use->stats.name)
static int scrub_kvwrite(int fd, char *buf, int max, const char *key, u64 val)
{
return scrub_writev(fd, buf, max, "|%s:%lld", key, val);
}
static int scrub_write_file(int fd, const char *fsid,
struct scrub_progress *data, int n)
{
int ret = 0;
int i;
char buf[1024];
struct scrub_progress local;
struct scrub_progress *use;
if (n < 1)
return -EINVAL;
/* each -1 is to subtract one \0 byte, the + 2 is for ':' and '\n' */
ret = scrub_write_buf(fd, SCRUB_FILE_VERSION_PREFIX ":"
SCRUB_FILE_VERSION "\n",
(sizeof(SCRUB_FILE_VERSION_PREFIX) - 1) +
(sizeof(SCRUB_FILE_VERSION) - 1) + 2);
if (ret)
return -EOVERFLOW;
for (i = 0; i < n; ++i) {
use = scrub_resumed_stats(&data[i], &local);
if (scrub_write_buf(fd, fsid, strlen(fsid)) ||
scrub_write_buf(fd, ":", 1) ||
scrub_writev(fd, buf, sizeof(buf), "%lld",
use->scrub_args.devid) ||
scrub_write_buf(fd, buf, ret) ||
_SCRUB_KVWRITE(fd, buf, data_extents_scrubbed, use) ||
_SCRUB_KVWRITE(fd, buf, tree_extents_scrubbed, use) ||
_SCRUB_KVWRITE(fd, buf, data_bytes_scrubbed, use) ||
_SCRUB_KVWRITE(fd, buf, tree_bytes_scrubbed, use) ||
_SCRUB_KVWRITE(fd, buf, read_errors, use) ||
_SCRUB_KVWRITE(fd, buf, csum_errors, use) ||
_SCRUB_KVWRITE(fd, buf, verify_errors, use) ||
_SCRUB_KVWRITE(fd, buf, no_csum, use) ||
_SCRUB_KVWRITE(fd, buf, csum_discards, use) ||
_SCRUB_KVWRITE(fd, buf, super_errors, use) ||
_SCRUB_KVWRITE(fd, buf, malloc_errors, use) ||
_SCRUB_KVWRITE(fd, buf, uncorrectable_errors, use) ||
_SCRUB_KVWRITE(fd, buf, corrected_errors, use) ||
_SCRUB_KVWRITE(fd, buf, last_physical, use) ||
_SCRUB_KVWRITE_STATS(fd, buf, t_start, use) ||
_SCRUB_KVWRITE_STATS(fd, buf, t_resumed, use) ||
_SCRUB_KVWRITE_STATS(fd, buf, duration, use) ||
_SCRUB_KVWRITE_STATS(fd, buf, canceled, use) ||
_SCRUB_KVWRITE_STATS(fd, buf, finished, use) ||
scrub_write_buf(fd, "\n", 1)) {
return -EOVERFLOW;
}
}
return 0;
}
static int scrub_write_progress(pthread_mutex_t *m, const char *fsid,
struct scrub_progress *data, int n)
{
int ret;
int err;
int fd = -1;
int old;
ret = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &old);
if (ret) {
err = -ret;
goto out3;
}
ret = pthread_mutex_lock(m);
if (ret) {
err = -ret;
goto out2;
}
fd = scrub_open_file_w(SCRUB_DATA_FILE, fsid, "tmp");
if (fd < 0) {
err = fd;
goto out1;
}
err = scrub_write_file(fd, fsid, data, n);
if (err)
goto out1;
err = scrub_rename_file(SCRUB_DATA_FILE, fsid, "tmp");
if (err)
goto out1;
out1:
if (fd >= 0) {
ret = close(fd);
if (ret)
err = -errno;
}
ret = pthread_mutex_unlock(m);
if (ret && !err)
err = -ret;
out2:
ret = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old);
if (ret && !err)
err = -ret;
out3:
return err;
}
static void *scrub_one_dev(void *ctx)
{
struct scrub_progress *sp = ctx;
int ret;
struct timeval tv;
sp->stats.canceled = 0;
sp->stats.duration = 0;
sp->stats.finished = 0;
ret = syscall(SYS_ioprio_set, IOPRIO_WHO_PROCESS, 0,
IOPRIO_PRIO_VALUE(sp->ioprio_class,
sp->ioprio_classdata));
if (ret)
warning("setting ioprio failed: %m (ignored)");
ret = ioctl(sp->fd, BTRFS_IOC_SCRUB, &sp->scrub_args);
gettimeofday(&tv, NULL);
sp->ret = ret;
sp->stats.duration = tv.tv_sec - sp->stats.t_start;
sp->stats.canceled = !!ret;
sp->ioctl_errno = errno;
ret = pthread_mutex_lock(&sp->progress_mutex);
if (ret)
return ERR_PTR(-ret);
sp->stats.finished = 1;
ret = pthread_mutex_unlock(&sp->progress_mutex);
if (ret)
return ERR_PTR(-ret);
return NULL;
}
static void *progress_one_dev(void *ctx)
{
struct scrub_progress *sp = ctx;
sp->ret = ioctl(sp->fd, BTRFS_IOC_SCRUB_PROGRESS, &sp->scrub_args);
sp->ioctl_errno = errno;
return NULL;
}
/* nb: returns a negative errno via ERR_PTR */
static void *scrub_progress_cycle(void *ctx)
{
int ret = 0;
int perr = 0; /* positive / pthread error returns */
int old;
int i;
char fsid[BTRFS_UUID_UNPARSED_SIZE];
struct scrub_progress *sp;
struct scrub_progress *sp_last;
struct scrub_progress *sp_shared;
struct timeval tv;
struct scrub_progress_cycle *spc = ctx;
int ndev = spc->fi->num_devices;
int this = 1;
int last = 0;
int peer_fd = -1;
struct pollfd accept_poll_fd = {
.fd = spc->prg_fd,
.events = POLLIN,
.revents = 0,
};
struct pollfd write_poll_fd = {
.events = POLLOUT,
.revents = 0,
};
struct sockaddr_un peer;
socklen_t peer_size = sizeof(peer);
perr = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old);
if (perr)
goto out;
uuid_unparse(spc->fi->fsid, fsid);
for (i = 0; i < ndev; ++i) {
sp = &spc->progress[i];
sp_last = &spc->progress[i + ndev];
sp_shared = &spc->shared_progress[i];
sp->scrub_args.devid = sp_last->scrub_args.devid =
sp_shared->scrub_args.devid;
sp->fd = sp_last->fd = spc->fdmnt;
sp->stats.t_start = sp_last->stats.t_start =
sp_shared->stats.t_start;
sp->resumed = sp_last->resumed = sp_shared->resumed;
sp->skip = sp_last->skip = sp_shared->skip;
sp->stats.finished = sp_last->stats.finished =
sp_shared->stats.finished;
}
while (1) {
ret = poll(&accept_poll_fd, 1, 5 * 1000);
if (ret == -1) {
ret = -errno;
goto out;
}
if (ret)
peer_fd = accept(spc->prg_fd, (struct sockaddr *)&peer,
&peer_size);
gettimeofday(&tv, NULL);
this = (this + 1)%2;
last = (last + 1)%2;
for (i = 0; i < ndev; ++i) {
sp = &spc->progress[this * ndev + i];
sp_last = &spc->progress[last * ndev + i];
sp_shared = &spc->shared_progress[i];
if (sp->stats.finished)
continue;
progress_one_dev(sp);
sp->stats.duration = tv.tv_sec - sp->stats.t_start;
if (!sp->ret)
continue;
if (sp->ioctl_errno != ENOTCONN &&
sp->ioctl_errno != ENODEV) {
ret = -sp->ioctl_errno;
goto out;
}
/*
* scrub finished or device removed, check the
* finished flag. if unset, just use the last
* result we got for the current write and go
* on. flag should be set on next cycle, then.
*/
perr = pthread_setcancelstate(
PTHREAD_CANCEL_DISABLE, &old);
if (perr)
goto out;
perr = pthread_mutex_lock(&sp_shared->progress_mutex);
if (perr)
goto out;
if (!sp_shared->stats.finished) {
perr = pthread_mutex_unlock(
&sp_shared->progress_mutex);
if (perr)
goto out;
perr = pthread_setcancelstate(
PTHREAD_CANCEL_ENABLE, &old);
if (perr)
goto out;
memcpy(sp, sp_last, sizeof(*sp));
continue;
}
perr = pthread_mutex_unlock(&sp_shared->progress_mutex);
if (perr)
goto out;
perr = pthread_setcancelstate(
PTHREAD_CANCEL_ENABLE, &old);
if (perr)
goto out;
memcpy(sp, sp_shared, sizeof(*sp));
memcpy(sp_last, sp_shared, sizeof(*sp));
}
if (peer_fd != -1) {
write_poll_fd.fd = peer_fd;
ret = poll(&write_poll_fd, 1, 0);
if (ret == -1) {
ret = -errno;
goto out;
}
if (ret) {
ret = scrub_write_file(
peer_fd, fsid,
&spc->progress[this * ndev], ndev);
if (ret)
goto out;
}
close(peer_fd);
peer_fd = -1;
}
if (!spc->do_record)
continue;
ret = scrub_write_progress(spc->write_mutex, fsid,
&spc->progress[this * ndev], ndev);
if (ret)
goto out;
}
out:
if (peer_fd != -1)
close(peer_fd);
if (perr)
ret = -perr;
return ERR_PTR(ret);
}
static struct scrub_file_record *last_dev_scrub(
struct scrub_file_record *const *const past_scrubs, u64 devid)
{
int i;
if (!past_scrubs || IS_ERR(past_scrubs))
return NULL;
for (i = 0; past_scrubs[i]; ++i)
if (past_scrubs[i]->devid == devid)
return past_scrubs[i];
return NULL;
}
static int mkdir_p(char *path)
{
int i;
int ret;
for (i = 1; i < strlen(path); ++i) {
if (path[i] != '/')
continue;
path[i] = '\0';
ret = mkdir(path, 0777);
if (ret && errno != EEXIST)
return -errno;
path[i] = '/';
}
return 0;
}
static int is_scrub_running_on_fs(struct btrfs_ioctl_fs_info_args *fi_args,
struct btrfs_ioctl_dev_info_args *di_args,
struct scrub_file_record **past_scrubs)
{
int i;
if (!fi_args || !di_args || !past_scrubs)
return 0;
for (i = 0; i < fi_args->num_devices; i++) {
struct scrub_file_record *sfr =
last_dev_scrub(past_scrubs, di_args[i].devid);
if (!sfr)
continue;
if (!(sfr->stats.finished || sfr->stats.canceled))
return 1;
}
return 0;
}
static int is_scrub_running_in_kernel(int fd,
struct btrfs_ioctl_dev_info_args *di_args, u64 max_devices)
{
struct scrub_progress sp;
int i;
int ret;
for (i = 0; i < max_devices; i++) {
memset(&sp, 0, sizeof(sp));
sp.scrub_args.devid = di_args[i].devid;
ret = ioctl(fd, BTRFS_IOC_SCRUB_PROGRESS, &sp.scrub_args);
if (!ret)
return 1;
}
return 0;
}
static u64 read_scrub_device_limit(int fd, u64 devid)
{
char path[PATH_MAX] = { 0 };
u64 limit;
int ret;
/* /sys/fs/btrfs/FSID/devinfo/1/scrub_speed_max */
snprintf(path, sizeof(path), "devinfo/%llu/scrub_speed_max", devid);
ret = sysfs_read_fsid_file_u64(fd, path, &limit);
if (ret < 0)
limit = 0;
return limit;
}
static u64 write_scrub_device_limit(int fd, u64 devid, u64 limit)
{
char path[PATH_MAX] = { 0 };
int ret;
/* /sys/fs/btrfs/FSID/devinfo/1/scrub_speed_max */
snprintf(path, sizeof(path), "devinfo/%llu/scrub_speed_max", devid);
ret = sysfs_write_fsid_file_u64(fd, path, limit);
return ret;
}
static int scrub_start(const struct cmd_struct *cmd, int argc, char **argv,
bool resume)
{
int fdmnt;
int prg_fd = -1;
int fdres = -1;
int ret;
pid_t pid;
int c;
int i;
int err = 0;
int e_uncorrectable = 0;
int e_correctable = 0;
bool print_raw = false;
char *path;
bool do_background = true;
bool do_wait = false;
bool do_print = false;
bool do_record = true;
bool readonly = false;
bool do_stats_per_dev = false;
int ioprio_class = IOPRIO_CLASS_IDLE;
int ioprio_classdata = 0;
int n_start = 0;
int n_resume = 0;
struct btrfs_ioctl_fs_info_args fi_args;
struct btrfs_ioctl_dev_info_args *di_args = NULL;
struct scrub_progress *sp = NULL;
struct scrub_fs_stat fs_stat;
struct timeval tv;
struct sockaddr_un addr = {
.sun_family = AF_UNIX,
};
pthread_t *t_devs = NULL;
pthread_t t_prog;
struct scrub_file_record **past_scrubs = NULL;
struct scrub_file_record *last_scrub = NULL;
char datafile[] = SCRUB_DATA_FILE;
char fsid[BTRFS_UUID_UNPARSED_SIZE];
char sock_path[PATH_MAX] = "";
struct scrub_progress_cycle spc;
pthread_mutex_t spc_write_mutex = PTHREAD_MUTEX_INITIALIZER;
void *terr;
u64 devid;
bool force = false;
bool nothing_to_resume = false;
while ((c = getopt(argc, argv, "BdqrRc:n:f")) != -1) {
switch (c) {
case 'B':
do_background = false;
do_wait = true;
do_print = true;
break;
case 'd':
do_stats_per_dev = true;
break;
case 'q':
bconf_be_quiet();
break;
case 'r':
readonly = true;
break;
case 'R':
print_raw = true;
break;
case 'c':
ioprio_class = (int)strtol(optarg, NULL, 10);
break;
case 'n':
ioprio_classdata = (int)strtol(optarg, NULL, 10);
break;
case 'f':
force = true;
break;
default:
usage_unknown_option(cmd, argv);
}
}
/* try to catch most error cases before forking */
if (check_argc_exact(argc - optind, 1))
return 1;
spc.progress = NULL;
if (bconf.verbose == BTRFS_BCONF_QUIET && do_print)
do_print = false;
if (mkdir_p(datafile)) {
warning("cannot create scrub data file, mkdir %s failed: %m, status recording disabled",
datafile);
do_record = false;
}
path = argv[optind];
fdmnt = btrfs_open_mnt(path);
if (fdmnt < 0)
return 1;
ret = get_fs_info(path, &fi_args, &di_args);
if (ret) {
errno = -ret;
error("getting dev info for scrub failed: %m");
err = 1;
goto out;
}
if (!fi_args.num_devices) {
error("no devices found");
err = 1;
goto out;
}
uuid_unparse(fi_args.fsid, fsid);
fdres = scrub_open_file_r(SCRUB_DATA_FILE, fsid);
if (fdres < 0 && fdres != -ENOENT) {
errno = -fdres;
warning("failed to open status file: %m");
} else if (fdres >= 0) {
past_scrubs = scrub_read_file(fdres, 1);
if (IS_ERR(past_scrubs)) {
errno = -PTR_ERR(past_scrubs);
warning("failed to read status file: %m");
}
close(fdres);
}
/*
* Check for stale information in the status file, ie. if it's
* canceled=0, finished=0 but no scrub is running.
*/
if (!is_scrub_running_in_kernel(fdmnt, di_args, fi_args.num_devices))
force = true;
/*
* check whether any involved device is already busy running a
* scrub. This would cause damaged status messages and the state
* "aborted" without the explanation that a scrub was already
* running. Therefore check it first, prevent it and give some
* feedback to the user if scrub is already running.
* Note that if scrub is started with a block device as the
* parameter, only that particular block device is checked. It
* is a normal mode of operation to start scrub on multiple
* single devices, there is no reason to prevent this.
*/
if (!force && is_scrub_running_on_fs(&fi_args, di_args, past_scrubs)) {
error( "Scrub is already running.\n"
"To cancel use 'btrfs scrub cancel %s'.\n"
"To see the status use 'btrfs scrub status [-d] %s'",
path, path);
err = 1;
goto out;
}
t_devs = malloc(fi_args.num_devices * sizeof(*t_devs));
sp = calloc(fi_args.num_devices, sizeof(*sp));
spc.progress = calloc(fi_args.num_devices * 2, sizeof(*spc.progress));
if (!t_devs || !sp || !spc.progress) {
error("scrub failed: %m");
err = 1;
goto out;
}
for (i = 0; i < fi_args.num_devices; ++i) {
devid = di_args[i].devid;
ret = pthread_mutex_init(&sp[i].progress_mutex, NULL);
if (ret) {
errno = ret;
error("pthread_mutex_init failed: %m");
err = 1;
goto out;
}
last_scrub = last_dev_scrub(past_scrubs, devid);
sp[i].scrub_args.devid = devid;
sp[i].fd = fdmnt;
if (resume && last_scrub && (last_scrub->stats.canceled ||
!last_scrub->stats.finished)) {
++n_resume;
sp[i].scrub_args.start = last_scrub->p.last_physical;
sp[i].resumed = last_scrub;
} else if (resume) {
sp[i].skip = 1;
sp[i].resumed = last_scrub;
continue;
} else {
++n_start;
sp[i].scrub_args.start = 0ll;
sp[i].resumed = NULL;
}
sp[i].skip = 0;
sp[i].scrub_args.end = (u64)-1ll;
sp[i].scrub_args.flags = readonly ? BTRFS_SCRUB_READONLY : 0;
sp[i].ioprio_class = ioprio_class;
sp[i].ioprio_classdata = ioprio_classdata;
sp[i].limit = read_scrub_device_limit(fdmnt, devid);
}
if (!n_start && !n_resume) {
pr_verbose(LOG_DEFAULT,
"scrub: nothing to resume for %s, fsid %s\n",
path, fsid);
nothing_to_resume = true;
goto out;
}
ret = prg_fd = socket(AF_UNIX, SOCK_STREAM, 0);
while (ret != -1) {
ret = scrub_datafile(SCRUB_PROGRESS_SOCKET_PATH, fsid, NULL,
sock_path, sizeof(sock_path));
/* ignore EOVERFLOW, try using a shorter path for the socket */
addr.sun_path[sizeof(addr.sun_path) - 1] = '\0';
strncpy_null(addr.sun_path, sock_path, sizeof(addr.sun_path));
ret = bind(prg_fd, (struct sockaddr *)&addr, sizeof(addr));
if (ret != -1 || errno != EADDRINUSE)
break;
/*
* bind failed with EADDRINUSE. so let's see if anyone answers
* when we make a call to the socket ...
*/
ret = connect(prg_fd, (struct sockaddr *)&addr, sizeof(addr));
if (!ret || errno != ECONNREFUSED) {
/* ... yes, so scrub must be running. error out */
error("scrub already running");
close(prg_fd);
prg_fd = -1;
goto out;
}
/*
* ... no, this means someone left us alone with an unused
* socket in the file system. remove it and try again.
*/
ret = unlink(sock_path);
}
if (ret != -1)
ret = listen(prg_fd, 100);
if (ret == -1) {
warning("failed to open the progress status socket at %s: %m, progress cannot be queried",
sock_path[0] ? sock_path :
SCRUB_PROGRESS_SOCKET_PATH);
if (prg_fd != -1) {
close(prg_fd);
prg_fd = -1;
if (sock_path[0])
unlink(sock_path);
}
}
if (do_record) {
/* write all-zero progress file for a start */
ret = scrub_write_progress(&spc_write_mutex, fsid, sp,
fi_args.num_devices);
if (ret) {
errno = -ret;
warning("failed to write the progress status file: %m, status recording disabled");
do_record = false;
}
}
if (do_background) {
pid = fork();
if (pid == -1) {
error("cannot scrub, fork failed: %m");
err = 1;
goto out;
}
if (pid) {
int stat;
scrub_handle_sigint_parent();
pr_verbose(LOG_DEFAULT,
"scrub %s on %s, fsid %s (pid=%d)\n",
n_start ? "started" : "resumed",
path, fsid, pid);
if (!do_wait) {
err = 0;
goto out;
}
ret = wait(&stat);
if (ret != pid) {
error("wait failed (ret=%d): %m", ret);
err = 1;
goto out;
}
if (!WIFEXITED(stat) || WEXITSTATUS(stat)) {
err = WIFEXITED(stat) ? WEXITSTATUS(stat) : -1;
error("scrub process failed with error %d", err);
goto out;
}
err = 0;
goto out;
}
}
scrub_handle_sigint_child(fdmnt);
for (i = 0; i < fi_args.num_devices; ++i) {
if (sp[i].skip) {
sp[i].scrub_args.progress = sp[i].resumed->p;
sp[i].stats = sp[i].resumed->stats;
sp[i].ret = 0;
sp[i].stats.finished = 1;
continue;
}
devid = di_args[i].devid;
gettimeofday(&tv, NULL);
sp[i].stats.t_start = tv.tv_sec;
pr_verbose(LOG_DEFAULT, "Starting scrub on devid %llu", devid);
if (sp[i].limit > 0)
pr_verbose(LOG_DEFAULT, " (limit %s/s)\n", pretty_size(sp[i].limit));
else
pr_verbose(LOG_DEFAULT, "\n");
ret = pthread_create(&t_devs[i], NULL,
scrub_one_dev, &sp[i]);
if (ret) {
if (do_print) {
errno = ret;
error(
"creating scrub_one_dev[%llu] thread failed: %m",
devid);
}
err = 1;
goto out;
}
}
spc.fdmnt = fdmnt;
spc.prg_fd = prg_fd;
spc.do_record = do_record;
spc.write_mutex = &spc_write_mutex;
spc.shared_progress = sp;
spc.fi = &fi_args;
ret = pthread_create(&t_prog, NULL, scrub_progress_cycle, &spc);
if (ret) {
if (do_print) {
errno = ret;
error("creating progress thread failed: %m");
}
err = 1;
goto out;
}
err = 0;
for (i = 0; i < fi_args.num_devices; ++i) {
if (sp[i].skip)
continue;
devid = di_args[i].devid;
ret = pthread_join(t_devs[i], NULL);
if (ret) {
if (do_print) {
errno = ret;
error(
"pthread_join failed for scrub_one_dev[%llu]: %m",
devid);
}
++err;
continue;
}
if (sp[i].ret) {
switch (sp[i].ioctl_errno) {
case ENODEV:
if (do_print)
warning("device %lld not present",
devid);
continue;
case ECANCELED:
++err;
break;
default:
if (do_print) {
errno = sp[i].ioctl_errno;
error(
"scrubbing %s failed for device id %lld: ret=%d, errno=%d (%m)",
path, devid, sp[i].ret,
sp[i].ioctl_errno);
}
++err;
continue;
}
}
if (sp[i].scrub_args.progress.uncorrectable_errors > 0)
e_uncorrectable++;
if (sp[i].scrub_args.progress.corrected_errors > 0
|| sp[i].scrub_args.progress.unverified_errors > 0)
e_correctable++;
}
if (do_print) {
const char *append = "done";
u64 total_bytes_scrubbed = 0;
u64 limit = 0;
if (!do_stats_per_dev)
init_fs_stat(&fs_stat);
for (i = 0; i < fi_args.num_devices; ++i) {
struct btrfs_scrub_progress *cur_progress =
&sp[i].scrub_args.progress;
/* On a multi-device filesystem, keep the lowest limit only. */
if (!limit || (sp[i].limit && sp[i].limit < limit))
limit = sp[i].limit;
if (do_stats_per_dev) {
print_scrub_dev(&di_args[i],
cur_progress,
print_raw,
sp[i].ret ? "canceled" : "done",
&sp[i].stats,
sp[i].limit);
} else {
if (sp[i].ret)
append = "canceled";
add_to_fs_stat(cur_progress, &sp[i].stats, &fs_stat);
}
total_bytes_scrubbed += cur_progress->data_bytes_scrubbed +
cur_progress->tree_bytes_scrubbed;
}
if (!do_stats_per_dev) {
pr_verbose(LOG_DEFAULT, "scrub %s for %s\n", append, fsid);
print_fs_stat(&fs_stat, print_raw, total_bytes_scrubbed,
fi_args.num_devices, limit);
}
}
ret = pthread_cancel(t_prog);
if (!ret)
ret = pthread_join(t_prog, &terr);
/* check for errors from the handling of the progress thread */
if (do_print && ret) {
errno = ret;
error("progress thread handling failed: %m");
}
/* check for errors returned from the progress thread itself */
if (do_print && terr && terr != PTHREAD_CANCELED) {
errno = -PTR_ERR(terr);
error("recording progress failed: %m");
}
if (do_record) {
ret = scrub_write_progress(&spc_write_mutex, fsid, sp,
fi_args.num_devices);
if (ret && do_print) {
errno = -ret;
error("failed to record the result: %m");
}
}
scrub_handle_sigint_child(-1);
out:
free_history(past_scrubs);
free(di_args);
free(t_devs);
free(sp);
free(spc.progress);
if (prg_fd > -1) {
close(prg_fd);
if (sock_path[0])
unlink(sock_path);
}
close(fdmnt);
if (err)
return 1;
if (nothing_to_resume)
return 2;
if (e_uncorrectable) {
error("there are %d uncorrectable errors", e_uncorrectable);
return 3;
}
if (e_correctable)
warning("errors detected during scrubbing, %d corrected", e_correctable);
return 0;
}
static const char * const cmd_scrub_start_usage[] = {
"btrfs scrub start [-BdqrRf] [-c ioprio_class -n ioprio_classdata] <path>|<device>",
"Start a new scrub. If a scrub is already running, the new one fails.",
"",
OPTLINE("-B", "do not background"),
OPTLINE("-d", "stats per device (-B only)"),
OPTLINE("-r", "read only mode"),
OPTLINE("-R", "raw print mode, print full data instead of summary"),
OPTLINE("-c", "set ioprio class (see ionice(1) manpage)"),
OPTLINE("-n", "set ioprio classdata (see ionice(1) manpage)"),
OPTLINE("-f", "force starting new scrub even if a scrub is already running this is useful when scrub stats record file is damaged"),
OPTLINE("-q", "deprecated, alias for global -q option"),
HELPINFO_INSERT_GLOBALS,
HELPINFO_INSERT_QUIET,
NULL
};
static int cmd_scrub_start(const struct cmd_struct *cmd, int argc, char **argv)
{
return scrub_start(cmd, argc, argv, false);
}
static DEFINE_SIMPLE_COMMAND(scrub_start, "start");
static const char * const cmd_scrub_cancel_usage[] = {
"btrfs scrub cancel <path>|<device>",
"Cancel a running scrub",
HELPINFO_INSERT_GLOBALS,
HELPINFO_INSERT_QUIET,
NULL
};
static int cmd_scrub_cancel(const struct cmd_struct *cmd, int argc, char **argv)
{
char *path;
int ret;
int fdmnt = -1;
clean_args_no_options(cmd, argc, argv);
if (check_argc_exact(argc - optind, 1))
return 1;
path = argv[optind];
fdmnt = btrfs_open_mnt(path);
if (fdmnt < 0) {
ret = 1;
goto out;
}
ret = ioctl(fdmnt, BTRFS_IOC_SCRUB_CANCEL, NULL);
if (ret < 0) {
error("scrub cancel failed on %s: %s", path,
errno == ENOTCONN ? "not running" : strerror(errno));
if (errno == ENOTCONN)
ret = 2;
else
ret = 1;
goto out;
}
ret = 0;
pr_verbose(LOG_DEFAULT, "scrub cancelled\n");
out:
close(fdmnt);
return ret;
}
static DEFINE_SIMPLE_COMMAND(scrub_cancel, "cancel");
static const char * const cmd_scrub_resume_usage[] = {
"btrfs scrub resume [-BdqrR] [-c ioprio_class -n ioprio_classdata] <path>|<device>",
"Resume previously canceled or interrupted scrub",
"",
OPTLINE("-B", "do not background"),
OPTLINE("-d", "stats per device (-B only)"),
OPTLINE("-r", "read only mode"),
OPTLINE("-R", "raw print mode, print full data instead of summary"),
OPTLINE("-c", "set ioprio class (see ionice(1) manpage)"),
OPTLINE("-n", "set ioprio classdata (see ionice(1) manpage)"),
OPTLINE("-q", "deprecated, alias for global -q option"),
HELPINFO_INSERT_GLOBALS,
HELPINFO_INSERT_QUIET,
NULL
};
static int cmd_scrub_resume(const struct cmd_struct *cmd, int argc, char **argv)
{
return scrub_start(cmd, argc, argv, true);
}
static DEFINE_SIMPLE_COMMAND(scrub_resume, "resume");
static const char * const cmd_scrub_status_usage[] = {
"btrfs scrub status [-dR] <path>|<device>",
"Show status of running or finished scrub",
"",
OPTLINE("-d", "stats per device"),
OPTLINE("-R", "print raw stats"),
HELPINFO_UNITS_LONG,
NULL
};
static int cmd_scrub_status(const struct cmd_struct *cmd, int argc, char **argv)
{
char *path;
struct btrfs_ioctl_fs_info_args fi_args;
struct btrfs_ioctl_dev_info_args *di_args = NULL;
struct btrfs_ioctl_space_args *si_args = NULL;
struct scrub_file_record **past_scrubs = NULL;
struct scrub_file_record *last_scrub;
struct scrub_fs_stat fs_stat;
struct sockaddr_un addr = {
.sun_family = AF_UNIX,
};
int in_progress;
int ret;
int i;
int fdmnt;
bool print_raw = false;
bool do_stats_per_dev = false;
int c;
char fsid[BTRFS_UUID_UNPARSED_SIZE];
int fdres = -1;
int err = 0;
unit_mode = get_unit_mode_from_arg(&argc, argv, 0);
optind = 0;
while ((c = getopt(argc, argv, "dR")) != -1) {
switch (c) {
case 'd':
do_stats_per_dev = true;
break;
case 'R':
print_raw = true;
break;
default:
usage_unknown_option(cmd, argv);
}
}
if (check_argc_exact(argc - optind, 1))
return 1;
path = argv[optind];
fdmnt = btrfs_open_mnt(path);
if (fdmnt < 0)
return 1;
ret = get_fs_info(path, &fi_args, &di_args);
if (ret) {
errno = -ret;
error("getting dev info for scrub failed: %m");
err = 1;
goto out;
}
if (!fi_args.num_devices) {
error("no devices found");
err = 1;
goto out;
}
ret = get_df(fdmnt, &si_args);
if (ret) {
errno = -ret;
error("cannot get space info: %m");
err = 1;
goto out;
}
uuid_unparse(fi_args.fsid, fsid);
fdres = socket(AF_UNIX, SOCK_STREAM, 0);
if (fdres == -1) {
error("failed to create socket to receive progress information: %m");
err = 1;
goto out;
}
scrub_datafile(SCRUB_PROGRESS_SOCKET_PATH, fsid,
NULL, addr.sun_path, sizeof(addr.sun_path));
/* ignore EOVERFLOW, just use shorter name and hope for the best */
addr.sun_path[sizeof(addr.sun_path) - 1] = '\0';
ret = connect(fdres, (struct sockaddr *)&addr, sizeof(addr));
if (ret == -1) {
close(fdres);
fdres = scrub_open_file_r(SCRUB_DATA_FILE, fsid);
if (fdres < 0 && fdres != -ENOENT) {
errno = -fdres;
warning("failed to open status file: %m");
err = 1;
goto out;
}
}
if (fdres >= 0) {
past_scrubs = scrub_read_file(fdres, 1);
if (IS_ERR(past_scrubs)) {
errno = -PTR_ERR(past_scrubs);
warning("failed to read status: %m");
}
}
in_progress = is_scrub_running_in_kernel(fdmnt, di_args, fi_args.num_devices);
pr_verbose(LOG_DEFAULT, "UUID: %s\n", fsid);
if (do_stats_per_dev) {
for (i = 0; i < fi_args.num_devices; ++i) {
u64 limit;
limit = read_scrub_device_limit(fdmnt, di_args[i].devid);
last_scrub = last_dev_scrub(past_scrubs,
di_args[i].devid);
if (!last_scrub) {
print_scrub_dev(&di_args[i], NULL, print_raw,
NULL, NULL, limit);
continue;
}
last_scrub->stats.in_progress = in_progress;
print_scrub_dev(&di_args[i], &last_scrub->p, print_raw,
last_scrub->stats.finished ?
"history" : "status",
&last_scrub->stats, limit);
}
} else {
u64 total_bytes_used = 0;
struct btrfs_ioctl_space_info *sp = si_args->spaces;
u64 limit = 0;
init_fs_stat(&fs_stat);
fs_stat.s.in_progress = in_progress;
for (i = 0; i < fi_args.num_devices; ++i) {
/* On a multi-device filesystem, keep the lowest limit only. */
u64 this_limit = read_scrub_device_limit(fdmnt, di_args[i].devid);
if (!limit || (this_limit && this_limit < limit))
limit = this_limit;
last_scrub = last_dev_scrub(past_scrubs,
di_args[i].devid);
if (!last_scrub)
continue;
add_to_fs_stat(&last_scrub->p, &last_scrub->stats,
&fs_stat);
}
for (i = 0; i < si_args->total_spaces; i++, sp++) {
const int index = btrfs_bg_flags_to_raid_index(sp->flags);
const int factor = btrfs_raid_array[index].ncopies;
/* This is still slightly off for RAID56 */
total_bytes_used += sp->used_bytes * factor;
}
print_fs_stat(&fs_stat, print_raw, total_bytes_used,
fi_args.num_devices, limit);
}
out:
free_history(past_scrubs);
free(di_args);
free(si_args);
if (fdres > -1)
close(fdres);
close(fdmnt);
return !!err;
}
static DEFINE_SIMPLE_COMMAND(scrub_status, "status");
static const char * const cmd_scrub_limit_usage[] = {
"btrfs scrub limit [options] <path>",
"Show or set scrub limits on devices of the given filesystem.",
"",
OPTLINE("-a|--all", "apply the limit to all devices"),
OPTLINE("-d|--devid DEVID", "select the device by DEVID to apply the limit"),
OPTLINE("-l|--limit SIZE", "set the limit of the device to SIZE (size units with suffix), or 0 to reset to unlimited"),
HELPINFO_UNITS_LONG,
NULL
};
static int cmd_scrub_limit(const struct cmd_struct *cmd, int argc, char **argv)
{
struct btrfs_ioctl_fs_info_args fi_args = { 0 };
char fsid[BTRFS_UUID_UNPARSED_SIZE];
struct string_table *table = NULL;
int ret;
int fd = -1;
int cols, idx;
u64 opt_devid = 0;
bool devid_set = false;
u64 opt_limit = 0;
bool limit_set = false;
bool all_set = false;
unit_mode = get_unit_mode_from_arg(&argc, argv, 0);
optind = 0;
while (1) {
int c;
static const struct option long_options[] = {
{ "all", no_argument, NULL, 'a' },
{ "devid", required_argument, NULL, 'd' },
{ "limit", required_argument, NULL, 'l' },
{ NULL, 0, NULL, 0 }
};
c = getopt_long(argc, argv, "ad:l:", long_options, NULL);
if (c < 0)
break;
switch (c) {
case 'a':
all_set = true;
break;
case 'd':
opt_devid = arg_strtou64(optarg);
devid_set = true;
break;
case 'l':
opt_limit = arg_strtou64_with_suffix(optarg);
limit_set = true;
break;
default:
usage_unknown_option(cmd, argv);
}
}
if (check_argc_exact(argc - optind, 1))
return 1;
if (devid_set && all_set) {
error("--all and --devid cannot be used at the same time");
return 1;
}
if (devid_set && !limit_set) {
error("--devid and --limit must be set together");
return 1;
}
if (all_set && !limit_set) {
error("--all and --limit must be set together");
return 1;
}
if (!all_set && !devid_set && limit_set) {
error("--limit must be used with either --all or --deivd");
return 1;
}
fd = btrfs_open_file_or_dir(argv[optind]);
if (fd < 0)
return 1;
ret = ioctl(fd, BTRFS_IOC_FS_INFO, &fi_args);
if (ret < 0) {
error("failed to read filesystem info: %m");
ret = 1;
goto out;
}
if (fi_args.num_devices == 0) {
error("no devices found");
ret = 1;
goto out;
}
uuid_unparse(fi_args.fsid, fsid);
pr_verbose(LOG_DEFAULT, "UUID: %s\n", fsid);
if (devid_set) {
/* Set one device only. */
struct btrfs_ioctl_dev_info_args di_args = { 0 };
u64 limit;
ret = device_get_info(fd, opt_devid, &di_args);
if (ret == -ENODEV) {
error("device with devid %llu not found", opt_devid);
ret = 1;
goto out;
}
limit = read_scrub_device_limit(fd, opt_devid);
pr_verbose(LOG_DEFAULT, "Set scrub limit of devid %llu from %s%s to %s%s\n",
opt_devid,
limit > 0 ? pretty_size_mode(limit, unit_mode) : "unlimited",
limit > 0 ? "/s" : "",
opt_limit > 0 ? pretty_size_mode(opt_limit, unit_mode) : "unlimited",
opt_limit > 0 ? "/s" : "");
ret = write_scrub_device_limit(fd, opt_devid, opt_limit);
if (ret < 0) {
errno = -ret;
error("cannot write to the sysfs file: %m");
ret = 1;
}
ret = 0;
goto out;
}
if (all_set && limit_set) {
/* Set on all devices. */
for (u64 devid = 1; devid <= fi_args.max_id; devid++) {
u64 limit;
struct btrfs_ioctl_dev_info_args di_args = { 0 };
ret = device_get_info(fd, devid, &di_args);
if (ret == -ENODEV) {
continue;
} else if (ret < 0) {
errno = -ret;
error("cannot read devid %llu info: %m", devid);
goto out;
}
limit = read_scrub_device_limit(fd, di_args.devid);
pr_verbose(LOG_DEFAULT, "Set scrub limit of devid %llu from %s%s to %s%s\n",
devid,
limit > 0 ? pretty_size_mode(limit, unit_mode) : "unlimited",
limit > 0 ? "/s" : "",
opt_limit > 0 ? pretty_size_mode(opt_limit, unit_mode) : "unlimited",
opt_limit > 0 ? "/s" : "");
ret = write_scrub_device_limit(fd, devid, opt_limit);
if (ret < 0) {
error("cannot write to the sysfs file of devid %llu: %m", devid);
goto out;
}
}
ret = 0;
goto out;
}
cols = 3;
table = table_create(cols, 2 + fi_args.num_devices);
if (!table) {
error_msg(ERROR_MSG_MEMORY, NULL);
ret = 1;
goto out;
}
table->spacing = STRING_TABLE_SPACING_2;
idx = 0;
table_printf(table, idx++, 0, ">Id");
table_printf(table, idx++, 0, ">Limit");
table_printf(table, idx++, 0, ">Path");
for (int i = 0; i < cols; i++)
table_printf(table, i, 1, "*-");
for (u64 devid = 1, i = 0; devid <= fi_args.max_id; devid++) {
u64 limit;
struct btrfs_ioctl_dev_info_args di_args = { 0 };
ret = device_get_info(fd, devid, &di_args);
if (ret == -ENODEV) {
continue;
} else if (ret < 0) {
errno = -ret;
error("cannot read devid %llu info: %m", devid);
goto out;
}
limit = read_scrub_device_limit(fd, di_args.devid);
idx = 0;
table_printf(table, idx++, 2 + i, ">%llu", di_args.devid);
if (limit > 0) {
table_printf(table, idx++, 2 + i, ">%s",
pretty_size_mode(limit, unit_mode));
} else {
table_printf(table, idx++, 2 + i, ">%s", "-");
}
table_printf(table, idx++, 2 + i, "<%s", di_args.path);
i++;
}
table_dump(table);
out:
if (table)
table_free(table);
close(fd);
return !!ret;
}
static DEFINE_SIMPLE_COMMAND(scrub_limit, "limit");
static const char scrub_cmd_group_info[] =
"verify checksums of data and metadata";
static const struct cmd_group scrub_cmd_group = {
scrub_cmd_group_usage, scrub_cmd_group_info, {
&cmd_struct_scrub_start,
&cmd_struct_scrub_cancel,
&cmd_struct_scrub_resume,
&cmd_struct_scrub_status,
&cmd_struct_scrub_limit,
NULL
}
};
DEFINE_GROUP_COMMAND_TOKEN(scrub);