btrfs-progs/cmds-filesystem.c
Karel Zak dcc3df7e6d btrfs-progs: rename btrfs_scan_lblkid() to btrfs_scan_devices()
It seems like bad idea to use a library name (lblkid) within generic
function name. The currently used scanning library is implementation
detail and this detail should be hidden for rest of the code.

Signed-off-by: Karel Zak <kzak@redhat.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
2016-10-25 14:28:36 +02:00

1318 lines
30 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <errno.h>
#include <uuid/uuid.h>
#include <ctype.h>
#include <fcntl.h>
#include <ftw.h>
#include <mntent.h>
#include <linux/limits.h>
#include <getopt.h>
#include "kerncompat.h"
#include "ctree.h"
#include "ioctl.h"
#include "utils.h"
#include "volumes.h"
#include "commands.h"
#include "cmds-fi-usage.h"
#include "list_sort.h"
#include "disk-io.h"
#include "cmds-fi-du.h"
/*
* for btrfs fi show, we maintain a hash of fsids we've already printed.
* This way we don't print dups if a given FS is mounted more than once.
*/
#define SEEN_FSID_HASH_SIZE 256
struct seen_fsid {
u8 fsid[BTRFS_FSID_SIZE];
struct seen_fsid *next;
};
static struct seen_fsid *seen_fsid_hash[SEEN_FSID_HASH_SIZE] = {NULL,};
static int is_seen_fsid(u8 *fsid)
{
u8 hash = fsid[0];
int slot = hash % SEEN_FSID_HASH_SIZE;
struct seen_fsid *seen = seen_fsid_hash[slot];
while (seen) {
if (memcmp(seen->fsid, fsid, BTRFS_FSID_SIZE) == 0)
return 1;
seen = seen->next;
}
return 0;
}
static int add_seen_fsid(u8 *fsid)
{
u8 hash = fsid[0];
int slot = hash % SEEN_FSID_HASH_SIZE;
struct seen_fsid *seen = seen_fsid_hash[slot];
struct seen_fsid *alloc;
if (!seen)
goto insert;
while (1) {
if (memcmp(seen->fsid, fsid, BTRFS_FSID_SIZE) == 0)
return -EEXIST;
if (!seen->next)
break;
seen = seen->next;
}
insert:
alloc = malloc(sizeof(*alloc));
if (!alloc)
return -ENOMEM;
alloc->next = NULL;
memcpy(alloc->fsid, fsid, BTRFS_FSID_SIZE);
if (seen)
seen->next = alloc;
else
seen_fsid_hash[slot] = alloc;
return 0;
}
static void free_seen_fsid(void)
{
int slot;
struct seen_fsid *seen;
struct seen_fsid *next;
for (slot = 0; slot < SEEN_FSID_HASH_SIZE; slot++) {
seen = seen_fsid_hash[slot];
while (seen) {
next = seen->next;
free(seen);
seen = next;
}
seen_fsid_hash[slot] = NULL;
}
}
static const char * const filesystem_cmd_group_usage[] = {
"btrfs filesystem [<group>] <command> [<args>]",
NULL
};
static const char * const cmd_filesystem_df_usage[] = {
"btrfs filesystem df [options] <path>",
"Show space usage information for a mount point",
HELPINFO_UNITS_SHORT_LONG,
NULL
};
static int get_df(int fd, struct btrfs_ioctl_space_args **sargs_ret)
{
u64 count = 0;
int ret;
struct btrfs_ioctl_space_args *sargs;
sargs = malloc(sizeof(struct btrfs_ioctl_space_args));
if (!sargs)
return -ENOMEM;
sargs->space_slots = 0;
sargs->total_spaces = 0;
ret = ioctl(fd, BTRFS_IOC_SPACE_INFO, sargs);
if (ret < 0) {
error("cannot get space info: %s\n", strerror(errno));
free(sargs);
return -errno;
}
/* This really should never happen */
if (!sargs->total_spaces) {
free(sargs);
return -ENOENT;
}
count = sargs->total_spaces;
free(sargs);
sargs = malloc(sizeof(struct btrfs_ioctl_space_args) +
(count * sizeof(struct btrfs_ioctl_space_info)));
if (!sargs)
return -ENOMEM;
sargs->space_slots = count;
sargs->total_spaces = 0;
ret = ioctl(fd, BTRFS_IOC_SPACE_INFO, sargs);
if (ret < 0) {
error("cannot get space info with %llu slots: %s",
count, strerror(errno));
free(sargs);
return -errno;
}
*sargs_ret = sargs;
return 0;
}
static void print_df(struct btrfs_ioctl_space_args *sargs, unsigned unit_mode)
{
u64 i;
struct btrfs_ioctl_space_info *sp = sargs->spaces;
for (i = 0; i < sargs->total_spaces; i++, sp++) {
printf("%s, %s: total=%s, used=%s\n",
btrfs_group_type_str(sp->flags),
btrfs_group_profile_str(sp->flags),
pretty_size_mode(sp->total_bytes, unit_mode),
pretty_size_mode(sp->used_bytes, unit_mode));
}
}
static int cmd_filesystem_df(int argc, char **argv)
{
struct btrfs_ioctl_space_args *sargs = NULL;
int ret;
int fd;
char *path;
DIR *dirstream = NULL;
unsigned unit_mode;
unit_mode = get_unit_mode_from_arg(&argc, argv, 1);
clean_args_no_options(argc, argv, cmd_filesystem_df_usage);
if (check_argc_exact(argc - optind, 1))
usage(cmd_filesystem_df_usage);
path = argv[optind];
fd = btrfs_open_dir(path, &dirstream, 1);
if (fd < 0)
return 1;
ret = get_df(fd, &sargs);
if (ret == 0) {
print_df(sargs, unit_mode);
free(sargs);
} else {
error("get_df failed %s", strerror(-ret));
}
close_file_or_dir(fd, dirstream);
return !!ret;
}
static int match_search_item_kernel(__u8 *fsid, char *mnt, char *label,
char *search)
{
char uuidbuf[BTRFS_UUID_UNPARSED_SIZE];
int search_len = strlen(search);
search_len = min(search_len, BTRFS_UUID_UNPARSED_SIZE);
uuid_unparse(fsid, uuidbuf);
if (!strncmp(uuidbuf, search, search_len))
return 1;
if (*label && strcmp(label, search) == 0)
return 1;
if (strcmp(mnt, search) == 0)
return 1;
return 0;
}
static int uuid_search(struct btrfs_fs_devices *fs_devices, const char *search)
{
char uuidbuf[BTRFS_UUID_UNPARSED_SIZE];
struct list_head *cur;
struct btrfs_device *device;
int search_len = strlen(search);
search_len = min(search_len, BTRFS_UUID_UNPARSED_SIZE);
uuid_unparse(fs_devices->fsid, uuidbuf);
if (!strncmp(uuidbuf, search, search_len))
return 1;
list_for_each(cur, &fs_devices->devices) {
device = list_entry(cur, struct btrfs_device, dev_list);
if ((device->label && strcmp(device->label, search) == 0) ||
strcmp(device->name, search) == 0)
return 1;
}
return 0;
}
/*
* Sort devices by devid, ascending
*/
static int cmp_device_id(void *priv, struct list_head *a,
struct list_head *b)
{
const struct btrfs_device *da = list_entry(a, struct btrfs_device,
dev_list);
const struct btrfs_device *db = list_entry(b, struct btrfs_device,
dev_list);
return da->devid < db->devid ? -1 :
da->devid > db->devid ? 1 : 0;
}
static void splice_device_list(struct list_head *seed_devices,
struct list_head *all_devices)
{
struct btrfs_device *in_all, *next_all;
struct btrfs_device *in_seed, *next_seed;
list_for_each_entry_safe(in_all, next_all, all_devices, dev_list) {
list_for_each_entry_safe(in_seed, next_seed, seed_devices,
dev_list) {
if (in_all->devid == in_seed->devid) {
/*
* When do dev replace in a sprout fs
* to a dev in its seed fs, the replacing
* dev will reside in the sprout fs and
* the replaced dev will still exist
* in the seed fs.
* So pick the latest one when showing
* the sprout fs.
*/
if (in_all->generation
< in_seed->generation) {
list_del(&in_all->dev_list);
free(in_all);
} else if (in_all->generation
> in_seed->generation) {
list_del(&in_seed->dev_list);
free(in_seed);
}
break;
}
}
}
list_splice(seed_devices, all_devices);
}
static void print_devices(struct btrfs_fs_devices *fs_devices,
u64 *devs_found, unsigned unit_mode)
{
struct btrfs_device *device;
struct btrfs_fs_devices *cur_fs;
struct list_head *all_devices;
all_devices = &fs_devices->devices;
cur_fs = fs_devices->seed;
/* add all devices of seed fs to the fs to be printed */
while (cur_fs) {
splice_device_list(&cur_fs->devices, all_devices);
cur_fs = cur_fs->seed;
}
list_sort(NULL, all_devices, cmp_device_id);
list_for_each_entry(device, all_devices, dev_list) {
printf("\tdevid %4llu size %s used %s path %s\n",
(unsigned long long)device->devid,
pretty_size_mode(device->total_bytes, unit_mode),
pretty_size_mode(device->bytes_used, unit_mode),
device->name);
(*devs_found)++;
}
}
static void print_one_uuid(struct btrfs_fs_devices *fs_devices,
unsigned unit_mode)
{
char uuidbuf[BTRFS_UUID_UNPARSED_SIZE];
struct btrfs_device *device;
u64 devs_found = 0;
u64 total;
if (add_seen_fsid(fs_devices->fsid))
return;
uuid_unparse(fs_devices->fsid, uuidbuf);
device = list_entry(fs_devices->devices.next, struct btrfs_device,
dev_list);
if (device->label && device->label[0])
printf("Label: '%s' ", device->label);
else
printf("Label: none ");
total = device->total_devs;
printf(" uuid: %s\n\tTotal devices %llu FS bytes used %s\n", uuidbuf,
(unsigned long long)total,
pretty_size_mode(device->super_bytes_used, unit_mode));
print_devices(fs_devices, &devs_found, unit_mode);
if (devs_found < total) {
printf("\t*** Some devices missing\n");
}
printf("\n");
}
/* adds up all the used spaces as reported by the space info ioctl
*/
static u64 calc_used_bytes(struct btrfs_ioctl_space_args *si)
{
u64 ret = 0;
int i;
for (i = 0; i < si->total_spaces; i++)
ret += si->spaces[i].used_bytes;
return ret;
}
static int print_one_fs(struct btrfs_ioctl_fs_info_args *fs_info,
struct btrfs_ioctl_dev_info_args *dev_info,
struct btrfs_ioctl_space_args *space_info,
char *label, unsigned unit_mode)
{
int i;
int fd;
int missing = 0;
char uuidbuf[BTRFS_UUID_UNPARSED_SIZE];
struct btrfs_ioctl_dev_info_args *tmp_dev_info;
int ret;
ret = add_seen_fsid(fs_info->fsid);
if (ret == -EEXIST)
return 0;
else if (ret)
return ret;
uuid_unparse(fs_info->fsid, uuidbuf);
if (label && *label)
printf("Label: '%s' ", label);
else
printf("Label: none ");
printf(" uuid: %s\n\tTotal devices %llu FS bytes used %s\n", uuidbuf,
fs_info->num_devices,
pretty_size_mode(calc_used_bytes(space_info),
unit_mode));
for (i = 0; i < fs_info->num_devices; i++) {
char *canonical_path;
tmp_dev_info = (struct btrfs_ioctl_dev_info_args *)&dev_info[i];
/* Add check for missing devices even mounted */
fd = open((char *)tmp_dev_info->path, O_RDONLY);
if (fd < 0) {
missing = 1;
continue;
}
close(fd);
canonical_path = canonicalize_path((char *)tmp_dev_info->path);
printf("\tdevid %4llu size %s used %s path %s\n",
tmp_dev_info->devid,
pretty_size_mode(tmp_dev_info->total_bytes, unit_mode),
pretty_size_mode(tmp_dev_info->bytes_used, unit_mode),
canonical_path);
free(canonical_path);
}
if (missing)
printf("\t*** Some devices missing\n");
printf("\n");
return 0;
}
static int btrfs_scan_kernel(void *search, unsigned unit_mode)
{
int ret = 0, fd;
int found = 0;
FILE *f;
struct mntent *mnt;
struct btrfs_ioctl_fs_info_args fs_info_arg;
struct btrfs_ioctl_dev_info_args *dev_info_arg = NULL;
struct btrfs_ioctl_space_args *space_info_arg = NULL;
char label[BTRFS_LABEL_SIZE];
f = setmntent("/proc/self/mounts", "r");
if (f == NULL)
return 1;
memset(label, 0, sizeof(label));
while ((mnt = getmntent(f)) != NULL) {
free(dev_info_arg);
dev_info_arg = NULL;
if (strcmp(mnt->mnt_type, "btrfs"))
continue;
ret = get_fs_info(mnt->mnt_dir, &fs_info_arg,
&dev_info_arg);
if (ret)
goto out;
/* skip all fs already shown as mounted fs */
if (is_seen_fsid(fs_info_arg.fsid))
continue;
ret = get_label_mounted(mnt->mnt_dir, label);
/* provide backward kernel compatibility */
if (ret == -ENOTTY)
ret = get_label_unmounted(
(const char *)dev_info_arg->path, label);
if (ret)
goto out;
if (search && !match_search_item_kernel(fs_info_arg.fsid,
mnt->mnt_dir, label, search)) {
continue;
}
fd = open(mnt->mnt_dir, O_RDONLY);
if ((fd != -1) && !get_df(fd, &space_info_arg)) {
print_one_fs(&fs_info_arg, dev_info_arg,
space_info_arg, label, unit_mode);
free(space_info_arg);
memset(label, 0, sizeof(label));
found = 1;
}
if (fd != -1)
close(fd);
}
out:
free(dev_info_arg);
endmntent(f);
return !found;
}
static int dev_to_fsid(const char *dev, __u8 *fsid)
{
struct btrfs_super_block *disk_super;
char buf[BTRFS_SUPER_INFO_SIZE];
int ret;
int fd;
fd = open(dev, O_RDONLY);
if (fd < 0) {
ret = -errno;
return ret;
}
disk_super = (struct btrfs_super_block *)buf;
ret = btrfs_read_dev_super(fd, disk_super,
BTRFS_SUPER_INFO_OFFSET, SBREAD_DEFAULT);
if (ret)
goto out;
memcpy(fsid, disk_super->fsid, BTRFS_FSID_SIZE);
ret = 0;
out:
close(fd);
return ret;
}
static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
{
struct btrfs_fs_devices *cur_seed, *next_seed;
struct btrfs_device *device;
while (!list_empty(&fs_devices->devices)) {
device = list_entry(fs_devices->devices.next,
struct btrfs_device, dev_list);
list_del(&device->dev_list);
free(device->name);
free(device->label);
free(device);
}
/* free seed fs chain */
cur_seed = fs_devices->seed;
fs_devices->seed = NULL;
while (cur_seed) {
next_seed = cur_seed->seed;
free(cur_seed);
cur_seed = next_seed;
}
list_del(&fs_devices->list);
free(fs_devices);
}
static int copy_device(struct btrfs_device *dst,
struct btrfs_device *src)
{
dst->devid = src->devid;
memcpy(dst->uuid, src->uuid, BTRFS_UUID_SIZE);
if (src->name == NULL)
dst->name = NULL;
else {
dst->name = strdup(src->name);
if (!dst->name)
return -ENOMEM;
}
if (src->label == NULL)
dst->label = NULL;
else {
dst->label = strdup(src->label);
if (!dst->label) {
free(dst->name);
return -ENOMEM;
}
}
dst->total_devs = src->total_devs;
dst->super_bytes_used = src->super_bytes_used;
dst->total_bytes = src->total_bytes;
dst->bytes_used = src->bytes_used;
dst->generation = src->generation;
return 0;
}
static int copy_fs_devices(struct btrfs_fs_devices *dst,
struct btrfs_fs_devices *src)
{
struct btrfs_device *cur_dev, *dev_copy;
int ret = 0;
memcpy(dst->fsid, src->fsid, BTRFS_FSID_SIZE);
INIT_LIST_HEAD(&dst->devices);
dst->seed = NULL;
list_for_each_entry(cur_dev, &src->devices, dev_list) {
dev_copy = malloc(sizeof(*dev_copy));
if (!dev_copy) {
ret = -ENOMEM;
break;
}
ret = copy_device(dev_copy, cur_dev);
if (ret) {
free(dev_copy);
break;
}
list_add(&dev_copy->dev_list, &dst->devices);
dev_copy->fs_devices = dst;
}
return ret;
}
static int find_and_copy_seed(struct btrfs_fs_devices *seed,
struct btrfs_fs_devices *copy,
struct list_head *fs_uuids) {
struct btrfs_fs_devices *cur_fs;
list_for_each_entry(cur_fs, fs_uuids, list)
if (!memcmp(seed->fsid, cur_fs->fsid, BTRFS_FSID_SIZE))
return copy_fs_devices(copy, cur_fs);
return 1;
}
static int has_seed_devices(struct btrfs_fs_devices *fs_devices)
{
struct btrfs_device *device;
int dev_cnt_total, dev_cnt = 0;
device = list_first_entry(&fs_devices->devices, struct btrfs_device,
dev_list);
dev_cnt_total = device->total_devs;
list_for_each_entry(device, &fs_devices->devices, dev_list)
dev_cnt++;
return dev_cnt_total != dev_cnt;
}
static int search_umounted_fs_uuids(struct list_head *all_uuids,
char *search, int *found)
{
struct btrfs_fs_devices *cur_fs, *fs_copy;
struct list_head *fs_uuids;
int ret = 0;
fs_uuids = btrfs_scanned_uuids();
/*
* The fs_uuids list is global, and open_ctree_* will
* modify it, make a private copy here
*/
list_for_each_entry(cur_fs, fs_uuids, list) {
/* don't bother handle all fs, if search target specified */
if (search) {
if (uuid_search(cur_fs, search) == 0)
continue;
if (found)
*found = 1;
}
/* skip all fs already shown as mounted fs */
if (is_seen_fsid(cur_fs->fsid))
continue;
fs_copy = calloc(1, sizeof(*fs_copy));
if (!fs_copy) {
ret = -ENOMEM;
goto out;
}
ret = copy_fs_devices(fs_copy, cur_fs);
if (ret) {
free(fs_copy);
goto out;
}
list_add(&fs_copy->list, all_uuids);
}
out:
return ret;
}
static int map_seed_devices(struct list_head *all_uuids)
{
struct btrfs_fs_devices *cur_fs, *cur_seed;
struct btrfs_fs_devices *seed_copy;
struct btrfs_fs_devices *opened_fs;
struct btrfs_device *device;
struct btrfs_fs_info *fs_info;
struct list_head *fs_uuids;
int ret = 0;
fs_uuids = btrfs_scanned_uuids();
list_for_each_entry(cur_fs, all_uuids, list) {
device = list_first_entry(&cur_fs->devices,
struct btrfs_device, dev_list);
if (!device)
continue;
/* skip fs without seeds */
if (!has_seed_devices(cur_fs))
continue;
/*
* open_ctree_* detects seed/sprout mapping
*/
fs_info = open_ctree_fs_info(device->name, 0, 0, 0,
OPEN_CTREE_PARTIAL);
if (!fs_info)
continue;
/*
* copy the seed chain under the opened fs
*/
opened_fs = fs_info->fs_devices;
cur_seed = cur_fs;
while (opened_fs->seed) {
seed_copy = malloc(sizeof(*seed_copy));
if (!seed_copy) {
ret = -ENOMEM;
goto fail_out;
}
ret = find_and_copy_seed(opened_fs->seed, seed_copy,
fs_uuids);
if (ret) {
free(seed_copy);
goto fail_out;
}
cur_seed->seed = seed_copy;
opened_fs = opened_fs->seed;
cur_seed = cur_seed->seed;
}
close_ctree(fs_info->chunk_root);
}
out:
return ret;
fail_out:
close_ctree(fs_info->chunk_root);
goto out;
}
static const char * const cmd_filesystem_show_usage[] = {
"btrfs filesystem show [options] [<path>|<uuid>|<device>|label]",
"Show the structure of a filesystem",
"-d|--all-devices show only disks under /dev containing btrfs filesystem",
"-m|--mounted show only mounted btrfs",
HELPINFO_UNITS_LONG,
"If no argument is given, structure of all present filesystems is shown.",
NULL
};
static int cmd_filesystem_show(int argc, char **argv)
{
LIST_HEAD(all_uuids);
struct btrfs_fs_devices *fs_devices;
char *search = NULL;
int ret;
/* default, search both kernel and udev */
int where = -1;
int type = 0;
char mp[PATH_MAX];
char path[PATH_MAX];
__u8 fsid[BTRFS_FSID_SIZE];
char uuid_buf[BTRFS_UUID_UNPARSED_SIZE];
unsigned unit_mode;
int found = 0;
unit_mode = get_unit_mode_from_arg(&argc, argv, 0);
while (1) {
int c;
static const struct option long_options[] = {
{ "all-devices", no_argument, NULL, 'd'},
{ "mounted", no_argument, NULL, 'm'},
{ NULL, 0, NULL, 0 }
};
c = getopt_long(argc, argv, "dm", long_options, NULL);
if (c < 0)
break;
switch (c) {
case 'd':
where = BTRFS_SCAN_LBLKID;
break;
case 'm':
where = BTRFS_SCAN_MOUNTED;
break;
default:
usage(cmd_filesystem_show_usage);
}
}
if (check_argc_max(argc, optind + 1))
usage(cmd_filesystem_show_usage);
if (argc > optind) {
search = argv[optind];
if (*search == 0)
usage(cmd_filesystem_show_usage);
type = check_arg_type(search);
/*
* For search is a device:
* realpath do /dev/mapper/XX => /dev/dm-X
* which is required by BTRFS_SCAN_DEV
* For search is a mountpoint:
* realpath do /mnt/btrfs/ => /mnt/btrfs
* which shall be recognized by btrfs_scan_kernel()
*/
if (realpath(search, path))
search = path;
/*
* Needs special handling if input arg is block dev And if
* input arg is mount-point just print it right away
*/
if (type == BTRFS_ARG_BLKDEV && where != BTRFS_SCAN_LBLKID) {
ret = get_btrfs_mount(search, mp, sizeof(mp));
if (!ret) {
/* given block dev is mounted */
search = mp;
type = BTRFS_ARG_MNTPOINT;
} else {
ret = dev_to_fsid(search, fsid);
if (ret) {
error("no btrfs on %s", search);
return 1;
}
uuid_unparse(fsid, uuid_buf);
search = uuid_buf;
type = BTRFS_ARG_UUID;
goto devs_only;
}
}
}
if (where == BTRFS_SCAN_LBLKID)
goto devs_only;
/* show mounted btrfs */
ret = btrfs_scan_kernel(search, unit_mode);
if (search && !ret) {
/* since search is found we are done */
goto out;
}
/* shows mounted only */
if (where == BTRFS_SCAN_MOUNTED)
goto out;
devs_only:
ret = btrfs_scan_devices();
if (ret) {
error("blkid device scan returned %d\n", ret);
return 1;
}
ret = search_umounted_fs_uuids(&all_uuids, search, &found);
if (ret < 0) {
error("searching target device returned error %d", ret);
return 1;
}
/*
* The seed/sprout mapping are not detected yet,
* do mapping build for all umounted fs
*/
ret = map_seed_devices(&all_uuids);
if (ret) {
error("mapping seed devices returned error %d", ret);
return 1;
}
list_for_each_entry(fs_devices, &all_uuids, list)
print_one_uuid(fs_devices, unit_mode);
if (search && !found) {
error("not a valid btrfs filesystem: %s", search);
ret = 1;
}
while (!list_empty(&all_uuids)) {
fs_devices = list_entry(all_uuids.next,
struct btrfs_fs_devices, list);
free_fs_devices(fs_devices);
}
out:
free_seen_fsid();
return ret;
}
static const char * const cmd_filesystem_sync_usage[] = {
"btrfs filesystem sync <path>",
"Force a sync on a filesystem",
NULL
};
static int cmd_filesystem_sync(int argc, char **argv)
{
int fd, res, e;
char *path;
DIR *dirstream = NULL;
clean_args_no_options(argc, argv, cmd_filesystem_sync_usage);
if (check_argc_exact(argc - optind, 1))
usage(cmd_filesystem_sync_usage);
path = argv[optind];
fd = btrfs_open_dir(path, &dirstream, 1);
if (fd < 0)
return 1;
res = ioctl(fd, BTRFS_IOC_SYNC);
e = errno;
close_file_or_dir(fd, dirstream);
if( res < 0 ){
error("sync ioctl failed on '%s': %s", path, strerror(e));
return 1;
}
return 0;
}
static int parse_compress_type(char *s)
{
if (strcmp(optarg, "zlib") == 0)
return BTRFS_COMPRESS_ZLIB;
else if (strcmp(optarg, "lzo") == 0)
return BTRFS_COMPRESS_LZO;
else {
error("unknown compression type %s", s);
exit(1);
};
}
static const char * const cmd_filesystem_defrag_usage[] = {
"btrfs filesystem defragment [options] <file>|<dir> [<file>|<dir>...]",
"Defragment a file or a directory",
"",
"-v be verbose",
"-r defragment files recursively",
"-c[zlib,lzo] compress the file while defragmenting",
"-f flush data to disk immediately after defragmenting",
"-s start defragment only from byte onward",
"-l len defragment only up to len bytes",
"-t size target extent size hint (default: 32M)",
NULL
};
static int do_defrag(int fd, int fancy_ioctl,
struct btrfs_ioctl_defrag_range_args *range)
{
int ret;
if (!fancy_ioctl)
ret = ioctl(fd, BTRFS_IOC_DEFRAG, NULL);
else
ret = ioctl(fd, BTRFS_IOC_DEFRAG_RANGE, range);
return ret;
}
static int defrag_global_fancy_ioctl;
static struct btrfs_ioctl_defrag_range_args defrag_global_range;
static int defrag_global_verbose;
static int defrag_global_errors;
static int defrag_callback(const char *fpath, const struct stat *sb,
int typeflag, struct FTW *ftwbuf)
{
int ret = 0;
int err = 0;
int fd = 0;
if ((typeflag == FTW_F) && S_ISREG(sb->st_mode)) {
if (defrag_global_verbose)
printf("%s\n", fpath);
fd = open(fpath, O_RDWR);
if (fd < 0) {
err = errno;
goto error;
}
ret = do_defrag(fd, defrag_global_fancy_ioctl, &defrag_global_range);
close(fd);
if (ret && errno == ENOTTY && defrag_global_fancy_ioctl) {
error("defrag range ioctl not "
"supported in this kernel, please try "
"without any options.");
defrag_global_errors++;
return ENOTTY;
}
if (ret) {
err = errno;
goto error;
}
}
return 0;
error:
error("defrag failed on %s: %s", fpath, strerror(err));
defrag_global_errors++;
return 0;
}
static int cmd_filesystem_defrag(int argc, char **argv)
{
int fd;
int flush = 0;
u64 start = 0;
u64 len = (u64)-1;
u64 thresh;
int i;
int recursive = 0;
int ret = 0;
int e = 0;
int compress_type = BTRFS_COMPRESS_NONE;
DIR *dirstream;
/*
* Kernel has a different default (256K) that is supposed to be safe,
* but it does not defragment very well. The 32M will likely lead to
* better results and is independent of the kernel default.
*/
thresh = 32 * 1024 * 1024;
defrag_global_errors = 0;
defrag_global_verbose = 0;
defrag_global_errors = 0;
defrag_global_fancy_ioctl = 0;
while(1) {
int c = getopt(argc, argv, "vrc::fs:l:t:");
if (c < 0)
break;
switch(c) {
case 'c':
compress_type = BTRFS_COMPRESS_ZLIB;
if (optarg)
compress_type = parse_compress_type(optarg);
defrag_global_fancy_ioctl = 1;
break;
case 'f':
flush = 1;
defrag_global_fancy_ioctl = 1;
break;
case 'v':
defrag_global_verbose = 1;
break;
case 's':
start = parse_size(optarg);
defrag_global_fancy_ioctl = 1;
break;
case 'l':
len = parse_size(optarg);
defrag_global_fancy_ioctl = 1;
break;
case 't':
thresh = parse_size(optarg);
if (thresh > (u32)-1) {
warning(
"target extent size %llu too big, trimmed to %u",
thresh, (u32)-1);
thresh = (u32)-1;
}
defrag_global_fancy_ioctl = 1;
break;
case 'r':
recursive = 1;
break;
default:
usage(cmd_filesystem_defrag_usage);
}
}
if (check_argc_min(argc - optind, 1))
usage(cmd_filesystem_defrag_usage);
memset(&defrag_global_range, 0, sizeof(defrag_global_range));
defrag_global_range.start = start;
defrag_global_range.len = len;
defrag_global_range.extent_thresh = (u32)thresh;
if (compress_type) {
defrag_global_range.flags |= BTRFS_DEFRAG_RANGE_COMPRESS;
defrag_global_range.compress_type = compress_type;
}
if (flush)
defrag_global_range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
for (i = optind; i < argc; i++) {
struct stat st;
dirstream = NULL;
fd = open_file_or_dir(argv[i], &dirstream);
if (fd < 0) {
error("cannot open %s: %s\n", argv[i],
strerror(errno));
defrag_global_errors++;
close_file_or_dir(fd, dirstream);
continue;
}
if (fstat(fd, &st)) {
error("failed to stat %s: %s",
argv[i], strerror(errno));
defrag_global_errors++;
close_file_or_dir(fd, dirstream);
continue;
}
if (!(S_ISDIR(st.st_mode) || S_ISREG(st.st_mode))) {
error("%s is not a directory or a regular file\n",
argv[i]);
defrag_global_errors++;
close_file_or_dir(fd, dirstream);
continue;
}
if (recursive) {
if (S_ISDIR(st.st_mode)) {
ret = nftw(argv[i], defrag_callback, 10,
FTW_MOUNT | FTW_PHYS);
if (ret == ENOTTY)
exit(1);
/* errors are handled in the callback */
ret = 0;
} else {
if (defrag_global_verbose)
printf("%s\n", argv[i]);
ret = do_defrag(fd, defrag_global_fancy_ioctl,
&defrag_global_range);
e = errno;
}
} else {
if (defrag_global_verbose)
printf("%s\n", argv[i]);
ret = do_defrag(fd, defrag_global_fancy_ioctl,
&defrag_global_range);
e = errno;
}
close_file_or_dir(fd, dirstream);
if (ret && e == ENOTTY && defrag_global_fancy_ioctl) {
error("defrag range ioctl not "
"supported in this kernel, please try "
"without any options.");
defrag_global_errors++;
break;
}
if (ret) {
error("defrag failed on %s: %s", argv[i], strerror(e));
defrag_global_errors++;
}
}
if (defrag_global_errors)
fprintf(stderr, "total %d failures\n", defrag_global_errors);
return !!defrag_global_errors;
}
static const char * const cmd_filesystem_resize_usage[] = {
"btrfs filesystem resize [devid:][+/-]<newsize>[kKmMgGtTpPeE]|[devid:]max <path>",
"Resize a filesystem",
"If 'max' is passed, the filesystem will occupy all available space",
"on the device 'devid'.",
"[kK] means KiB, which denotes 1KiB = 1024B, 1MiB = 1024KiB, etc.",
NULL
};
static int cmd_filesystem_resize(int argc, char **argv)
{
struct btrfs_ioctl_vol_args args;
int fd, res, len, e;
char *amount, *path;
DIR *dirstream = NULL;
struct stat st;
clean_args_no_options_relaxed(argc, argv, cmd_filesystem_resize_usage);
if (check_argc_exact(argc - optind, 2))
usage(cmd_filesystem_resize_usage);
amount = argv[optind];
path = argv[optind + 1];
len = strlen(amount);
if (len == 0 || len >= BTRFS_VOL_NAME_MAX) {
error("resize value too long (%s)", amount);
return 1;
}
res = stat(path, &st);
if (res < 0) {
error("resize: cannot stat %s: %s", path, strerror(errno));
return 1;
}
if (!S_ISDIR(st.st_mode)) {
error("resize works on mounted filesystems and accepts only\n"
"directories as argument. Passing file containing a btrfs image\n"
"would resize the underlying filesystem instead of the image.\n");
return 1;
}
fd = btrfs_open_dir(path, &dirstream, 1);
if (fd < 0)
return 1;
printf("Resize '%s' of '%s'\n", path, amount);
memset(&args, 0, sizeof(args));
strncpy_null(args.name, amount);
res = ioctl(fd, BTRFS_IOC_RESIZE, &args);
e = errno;
close_file_or_dir(fd, dirstream);
if( res < 0 ){
switch (e) {
case EFBIG:
error("unable to resize '%s': no enough free space",
path);
break;
default:
error("unable to resize '%s': %s", path, strerror(e));
break;
}
return 1;
} else if (res > 0) {
const char *err_str = btrfs_err_str(res);
if (err_str) {
error("resizing of '%s' failed: %s", path, err_str);
} else {
error("resizing of '%s' failed: unknown error %d",
path, res);
}
return 1;
}
return 0;
}
static const char * const cmd_filesystem_label_usage[] = {
"btrfs filesystem label [<device>|<mount_point>] [<newlabel>]",
"Get or change the label of a filesystem",
"With one argument, get the label of filesystem on <device>.",
"If <newlabel> is passed, set the filesystem label to <newlabel>.",
NULL
};
static int cmd_filesystem_label(int argc, char **argv)
{
clean_args_no_options(argc, argv, cmd_filesystem_label_usage);
if (check_argc_min(argc - optind, 1) ||
check_argc_max(argc - optind, 2))
usage(cmd_filesystem_label_usage);
if (argc - optind > 1) {
return set_label(argv[optind], argv[optind + 1]);
} else {
char label[BTRFS_LABEL_SIZE];
int ret;
ret = get_label(argv[optind], label);
if (!ret)
fprintf(stdout, "%s\n", label);
return ret;
}
}
static const char filesystem_cmd_group_info[] =
"overall filesystem tasks and information";
const struct cmd_group filesystem_cmd_group = {
filesystem_cmd_group_usage, filesystem_cmd_group_info, {
{ "df", cmd_filesystem_df, cmd_filesystem_df_usage, NULL, 0 },
{ "du", cmd_filesystem_du, cmd_filesystem_du_usage, NULL, 0 },
{ "show", cmd_filesystem_show, cmd_filesystem_show_usage, NULL,
0 },
{ "sync", cmd_filesystem_sync, cmd_filesystem_sync_usage, NULL,
0 },
{ "defragment", cmd_filesystem_defrag,
cmd_filesystem_defrag_usage, NULL, 0 },
{ "balance", cmd_balance, NULL, &balance_cmd_group,
CMD_HIDDEN },
{ "resize", cmd_filesystem_resize, cmd_filesystem_resize_usage,
NULL, 0 },
{ "label", cmd_filesystem_label, cmd_filesystem_label_usage,
NULL, 0 },
{ "usage", cmd_filesystem_usage,
cmd_filesystem_usage_usage, NULL, 0 },
NULL_CMD_STRUCT
}
};
int cmd_filesystem(int argc, char **argv)
{
return handle_command_group(&filesystem_cmd_group, argc, argv);
}