/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include "kerncompat.h" #include "androidcompat.h" #include #include #include "ioctl.h" #include #include #include #include /* #include included via androidcompat.h */ #include #include #include #include #include #include #include #include #include #include #include "ctree.h" #include "disk-io.h" #include "volumes.h" #include "transaction.h" #include "utils.h" #include "list_sort.h" static u64 index_cnt = 2; static int verbose = 1; struct directory_name_entry { const char *dir_name; const char *path; ino_t inum; struct list_head list; }; struct mkfs_allocation { u64 data; u64 metadata; u64 mixed; u64 system; }; static int create_metadata_block_groups(struct btrfs_root *root, int mixed, struct mkfs_allocation *allocation) { struct btrfs_trans_handle *trans; u64 bytes_used; u64 chunk_start = 0; u64 chunk_size = 0; int ret; trans = btrfs_start_transaction(root, 1); bytes_used = btrfs_super_bytes_used(root->fs_info->super_copy); root->fs_info->system_allocs = 1; ret = btrfs_make_block_group(trans, root, bytes_used, BTRFS_BLOCK_GROUP_SYSTEM, BTRFS_FIRST_CHUNK_TREE_OBJECTID, 0, BTRFS_MKFS_SYSTEM_GROUP_SIZE); allocation->system += BTRFS_MKFS_SYSTEM_GROUP_SIZE; if (ret) return ret; if (mixed) { ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root, &chunk_start, &chunk_size, BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA); if (ret == -ENOSPC) { error("no space to allocate data/metadata chunk"); goto err; } if (ret) return ret; ret = btrfs_make_block_group(trans, root, 0, BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA, BTRFS_FIRST_CHUNK_TREE_OBJECTID, chunk_start, chunk_size); if (ret) return ret; allocation->mixed += chunk_size; } else { ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root, &chunk_start, &chunk_size, BTRFS_BLOCK_GROUP_METADATA); if (ret == -ENOSPC) { error("no space to allocate metadata chunk"); goto err; } if (ret) return ret; ret = btrfs_make_block_group(trans, root, 0, BTRFS_BLOCK_GROUP_METADATA, BTRFS_FIRST_CHUNK_TREE_OBJECTID, chunk_start, chunk_size); allocation->metadata += chunk_size; if (ret) return ret; } root->fs_info->system_allocs = 0; ret = btrfs_commit_transaction(trans, root); err: return ret; } static int create_data_block_groups(struct btrfs_trans_handle *trans, struct btrfs_root *root, int mixed, struct mkfs_allocation *allocation) { u64 chunk_start = 0; u64 chunk_size = 0; int ret = 0; if (!mixed) { ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root, &chunk_start, &chunk_size, BTRFS_BLOCK_GROUP_DATA); if (ret == -ENOSPC) { error("no space to allocate data chunk"); goto err; } if (ret) return ret; ret = btrfs_make_block_group(trans, root, 0, BTRFS_BLOCK_GROUP_DATA, BTRFS_FIRST_CHUNK_TREE_OBJECTID, chunk_start, chunk_size); allocation->data += chunk_size; if (ret) return ret; } err: return ret; } static int make_root_dir(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct mkfs_allocation *allocation) { struct btrfs_key location; int ret; ret = btrfs_make_root_dir(trans, root->fs_info->tree_root, BTRFS_ROOT_TREE_DIR_OBJECTID); if (ret) goto err; ret = btrfs_make_root_dir(trans, root, BTRFS_FIRST_FREE_OBJECTID); if (ret) goto err; memcpy(&location, &root->fs_info->fs_root->root_key, sizeof(location)); location.offset = (u64)-1; ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root, "default", 7, btrfs_super_root_dir(root->fs_info->super_copy), &location, BTRFS_FT_DIR, 0); if (ret) goto err; ret = btrfs_insert_inode_ref(trans, root->fs_info->tree_root, "default", 7, location.objectid, BTRFS_ROOT_TREE_DIR_OBJECTID, 0); if (ret) goto err; err: return ret; } static int __recow_root(struct btrfs_trans_handle *trans, struct btrfs_root *root) { struct extent_buffer *tmp; int ret; if (trans->transid != btrfs_root_generation(&root->root_item)) { extent_buffer_get(root->node); ret = __btrfs_cow_block(trans, root, root->node, NULL, 0, &tmp, 0, 0); if (ret) return ret; free_extent_buffer(tmp); } return 0; } static int recow_roots(struct btrfs_trans_handle *trans, struct btrfs_root *root) { struct btrfs_fs_info *info = root->fs_info; int ret; ret = __recow_root(trans, info->fs_root); if (ret) return ret; ret = __recow_root(trans, info->tree_root); if (ret) return ret; ret = __recow_root(trans, info->extent_root); if (ret) return ret; ret = __recow_root(trans, info->chunk_root); if (ret) return ret; ret = __recow_root(trans, info->dev_root); if (ret) return ret; ret = __recow_root(trans, info->csum_root); if (ret) return ret; return 0; } static int create_one_raid_group(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 type, struct mkfs_allocation *allocation) { u64 chunk_start; u64 chunk_size; int ret; ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root, &chunk_start, &chunk_size, type); if (ret == -ENOSPC) { error("not enough free space to allocate chunk"); exit(1); } if (ret) return ret; ret = btrfs_make_block_group(trans, root->fs_info->extent_root, 0, type, BTRFS_FIRST_CHUNK_TREE_OBJECTID, chunk_start, chunk_size); type &= BTRFS_BLOCK_GROUP_TYPE_MASK; if (type == BTRFS_BLOCK_GROUP_DATA) { allocation->data += chunk_size; } else if (type == BTRFS_BLOCK_GROUP_METADATA) { allocation->metadata += chunk_size; } else if (type == BTRFS_BLOCK_GROUP_SYSTEM) { allocation->system += chunk_size; } else if (type == (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA)) { allocation->mixed += chunk_size; } else { error("unrecognized profile type: 0x%llx", (unsigned long long)type); ret = -EINVAL; } return ret; } static int create_raid_groups(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 data_profile, u64 metadata_profile, int mixed, struct mkfs_allocation *allocation) { int ret; if (metadata_profile) { u64 meta_flags = BTRFS_BLOCK_GROUP_METADATA; ret = create_one_raid_group(trans, root, BTRFS_BLOCK_GROUP_SYSTEM | metadata_profile, allocation); if (ret) return ret; if (mixed) meta_flags |= BTRFS_BLOCK_GROUP_DATA; ret = create_one_raid_group(trans, root, meta_flags | metadata_profile, allocation); if (ret) return ret; } if (!mixed && data_profile) { ret = create_one_raid_group(trans, root, BTRFS_BLOCK_GROUP_DATA | data_profile, allocation); if (ret) return ret; } ret = recow_roots(trans, root); return ret; } static int create_data_reloc_tree(struct btrfs_trans_handle *trans, struct btrfs_root *root) { struct btrfs_key location; struct btrfs_root_item root_item; struct extent_buffer *tmp; u64 objectid = BTRFS_DATA_RELOC_TREE_OBJECTID; int ret; ret = btrfs_copy_root(trans, root, root->node, &tmp, objectid); if (ret) return ret; memcpy(&root_item, &root->root_item, sizeof(root_item)); btrfs_set_root_bytenr(&root_item, tmp->start); btrfs_set_root_level(&root_item, btrfs_header_level(tmp)); btrfs_set_root_generation(&root_item, trans->transid); free_extent_buffer(tmp); location.objectid = objectid; location.type = BTRFS_ROOT_ITEM_KEY; location.offset = 0; ret = btrfs_insert_root(trans, root->fs_info->tree_root, &location, &root_item); return ret; } static void print_usage(int ret) { printf("Usage: mkfs.btrfs [options] dev [ dev ... ]\n"); printf("Options:\n"); printf(" allocation profiles:\n"); printf("\t-d|--data PROFILE data profile, raid0, raid1, raid5, raid6, raid10, dup or single\n"); printf("\t-m|--metadata PROFILE metadata profile, values like for data profile\n"); printf("\t-M|--mixed mix metadata and data together\n"); printf(" features:\n"); printf("\t-n|--nodesize SIZE size of btree nodes\n"); printf("\t-s|--sectorsize SIZE data block size (may not be mountable by current kernel)\n"); printf("\t-O|--features LIST comma separated list of filesystem features (use '-O list-all' to list features)\n"); printf("\t-L|--label LABEL set the filesystem label\n"); printf("\t-U|--uuid UUID specify the filesystem UUID (must be unique)\n"); printf(" creation:\n"); printf("\t-b|--byte-count SIZE set filesystem size to SIZE (on the first device)\n"); printf("\t-r|--rootdir DIR copy files from DIR to the image root directory\n"); printf("\t-K|--nodiscard do not perform whole device TRIM\n"); printf("\t-f|--force force overwrite of existing filesystem\n"); printf(" general:\n"); printf("\t-q|--quiet no messages except errors\n"); printf("\t-V|--version print the mkfs.btrfs version and exit\n"); printf("\t--help print this help and exit\n"); printf(" deprecated:\n"); printf("\t-A|--alloc-start START the offset to start the filesystem\n"); printf("\t-l|--leafsize SIZE deprecated, alias for nodesize\n"); exit(ret); } static u64 parse_profile(const char *s) { if (strcasecmp(s, "raid0") == 0) { return BTRFS_BLOCK_GROUP_RAID0; } else if (strcasecmp(s, "raid1") == 0) { return BTRFS_BLOCK_GROUP_RAID1; } else if (strcasecmp(s, "raid5") == 0) { return BTRFS_BLOCK_GROUP_RAID5; } else if (strcasecmp(s, "raid6") == 0) { return BTRFS_BLOCK_GROUP_RAID6; } else if (strcasecmp(s, "raid10") == 0) { return BTRFS_BLOCK_GROUP_RAID10; } else if (strcasecmp(s, "dup") == 0) { return BTRFS_BLOCK_GROUP_DUP; } else if (strcasecmp(s, "single") == 0) { return 0; } else { error("unknown profile %s", s); exit(1); } /* not reached */ return 0; } static char *parse_label(const char *input) { int len = strlen(input); if (len >= BTRFS_LABEL_SIZE) { error("label %s is too long (max %d)", input, BTRFS_LABEL_SIZE - 1); exit(1); } return strdup(input); } static int add_directory_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, ino_t parent_inum, const char *name, struct stat *st, int *dir_index_cnt) { int ret; int name_len; struct btrfs_key location; u8 filetype = 0; name_len = strlen(name); location.objectid = objectid; location.offset = 0; location.type = BTRFS_INODE_ITEM_KEY; if (S_ISDIR(st->st_mode)) filetype = BTRFS_FT_DIR; if (S_ISREG(st->st_mode)) filetype = BTRFS_FT_REG_FILE; if (S_ISLNK(st->st_mode)) filetype = BTRFS_FT_SYMLINK; ret = btrfs_insert_dir_item(trans, root, name, name_len, parent_inum, &location, filetype, index_cnt); if (ret) return ret; ret = btrfs_insert_inode_ref(trans, root, name, name_len, objectid, parent_inum, index_cnt); *dir_index_cnt = index_cnt; index_cnt++; return ret; } static int fill_inode_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_inode_item *dst, struct stat *src) { u64 blocks = 0; u64 sectorsize = root->sectorsize; /* * btrfs_inode_item has some reserved fields * and represents on-disk inode entry, so * zero everything to prevent information leak */ memset(dst, 0, sizeof (*dst)); btrfs_set_stack_inode_generation(dst, trans->transid); btrfs_set_stack_inode_size(dst, src->st_size); btrfs_set_stack_inode_nbytes(dst, 0); btrfs_set_stack_inode_block_group(dst, 0); btrfs_set_stack_inode_nlink(dst, src->st_nlink); btrfs_set_stack_inode_uid(dst, src->st_uid); btrfs_set_stack_inode_gid(dst, src->st_gid); btrfs_set_stack_inode_mode(dst, src->st_mode); btrfs_set_stack_inode_rdev(dst, 0); btrfs_set_stack_inode_flags(dst, 0); btrfs_set_stack_timespec_sec(&dst->atime, src->st_atime); btrfs_set_stack_timespec_nsec(&dst->atime, 0); btrfs_set_stack_timespec_sec(&dst->ctime, src->st_ctime); btrfs_set_stack_timespec_nsec(&dst->ctime, 0); btrfs_set_stack_timespec_sec(&dst->mtime, src->st_mtime); btrfs_set_stack_timespec_nsec(&dst->mtime, 0); btrfs_set_stack_timespec_sec(&dst->otime, 0); btrfs_set_stack_timespec_nsec(&dst->otime, 0); if (S_ISDIR(src->st_mode)) { btrfs_set_stack_inode_size(dst, 0); btrfs_set_stack_inode_nlink(dst, 1); } if (S_ISREG(src->st_mode)) { btrfs_set_stack_inode_size(dst, (u64)src->st_size); if (src->st_size <= BTRFS_MAX_INLINE_DATA_SIZE(root)) btrfs_set_stack_inode_nbytes(dst, src->st_size); else { blocks = src->st_size / sectorsize; if (src->st_size % sectorsize) blocks += 1; blocks *= sectorsize; btrfs_set_stack_inode_nbytes(dst, blocks); } } if (S_ISLNK(src->st_mode)) btrfs_set_stack_inode_nbytes(dst, src->st_size + 1); return 0; } static int directory_select(const struct direct *entry) { if (entry->d_name[0] == '.' && (entry->d_name[1] == 0 || (entry->d_name[1] == '.' && entry->d_name[2] == 0))) return 0; return 1; } static void free_namelist(struct direct **files, int count) { int i; if (count < 0) return; for (i = 0; i < count; ++i) free(files[i]); free(files); } static u64 calculate_dir_inode_size(const char *dirname) { int count, i; struct direct **files, *cur_file; u64 dir_inode_size = 0; count = scandir(dirname, &files, directory_select, NULL); for (i = 0; i < count; i++) { cur_file = files[i]; dir_inode_size += strlen(cur_file->d_name); } free_namelist(files, count); dir_inode_size *= 2; return dir_inode_size; } static int add_inode_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct stat *st, const char *name, u64 self_objectid, ino_t parent_inum, int dir_index_cnt, struct btrfs_inode_item *inode_ret) { int ret; struct btrfs_inode_item btrfs_inode; u64 objectid; u64 inode_size = 0; fill_inode_item(trans, root, &btrfs_inode, st); objectid = self_objectid; if (S_ISDIR(st->st_mode)) { inode_size = calculate_dir_inode_size(name); btrfs_set_stack_inode_size(&btrfs_inode, inode_size); } ret = btrfs_insert_inode(trans, root, objectid, &btrfs_inode); *inode_ret = btrfs_inode; return ret; } static int add_xattr_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, const char *file_name) { int ret; int cur_name_len; char xattr_list[XATTR_LIST_MAX]; char *cur_name; char cur_value[XATTR_SIZE_MAX]; char delimiter = '\0'; char *next_location = xattr_list; ret = llistxattr(file_name, xattr_list, XATTR_LIST_MAX); if (ret < 0) { if(errno == ENOTSUP) return 0; error("getting a list of xattr failed for %s: %s", file_name, strerror(errno)); return ret; } if (ret == 0) return ret; cur_name = strtok(xattr_list, &delimiter); while (cur_name != NULL) { cur_name_len = strlen(cur_name); next_location += cur_name_len + 1; ret = getxattr(file_name, cur_name, cur_value, XATTR_SIZE_MAX); if (ret < 0) { if(errno == ENOTSUP) return 0; error("gettig a xattr value failed for %s attr %s: %s", file_name, cur_name, strerror(errno)); return ret; } ret = btrfs_insert_xattr_item(trans, root, cur_name, cur_name_len, cur_value, ret, objectid); if (ret) { error("inserting a xattr item failed for %s: %s", file_name, strerror(-ret)); } cur_name = strtok(next_location, &delimiter); } return ret; } static int add_symbolic_link(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, const char *path_name) { int ret; char buf[PATH_MAX]; ret = readlink(path_name, buf, sizeof(buf)); if (ret <= 0) { error("readlink failed for %s: %s", path_name, strerror(errno)); goto fail; } if (ret >= sizeof(buf)) { error("symlink too long for %s", path_name); ret = -1; goto fail; } buf[ret] = '\0'; /* readlink does not do it for us */ ret = btrfs_insert_inline_extent(trans, root, objectid, 0, buf, ret + 1); fail: return ret; } static int add_file_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_inode_item *btrfs_inode, u64 objectid, ino_t parent_inum, struct stat *st, const char *path_name, int out_fd) { int ret = -1; ssize_t ret_read; u64 bytes_read = 0; struct btrfs_key key; int blocks; u32 sectorsize = root->sectorsize; u64 first_block = 0; u64 file_pos = 0; u64 cur_bytes; u64 total_bytes; struct extent_buffer *eb = NULL; int fd; if (st->st_size == 0) return 0; fd = open(path_name, O_RDONLY); if (fd == -1) { error("cannot open %s: %s", path_name, strerror(errno)); return ret; } blocks = st->st_size / sectorsize; if (st->st_size % sectorsize) blocks += 1; if (st->st_size <= BTRFS_MAX_INLINE_DATA_SIZE(root)) { char *buffer = malloc(st->st_size); if (!buffer) { ret = -ENOMEM; goto end; } ret_read = pread64(fd, buffer, st->st_size, bytes_read); if (ret_read == -1) { error("cannot read %s at offset %llu length %llu: %s", path_name, (unsigned long long)bytes_read, (unsigned long long)st->st_size, strerror(errno)); free(buffer); goto end; } ret = btrfs_insert_inline_extent(trans, root, objectid, 0, buffer, st->st_size); free(buffer); goto end; } /* round up our st_size to the FS blocksize */ total_bytes = (u64)blocks * sectorsize; /* * do our IO in extent buffers so it can work * against any raid type */ eb = calloc(1, sizeof(*eb) + sectorsize); if (!eb) { ret = -ENOMEM; goto end; } again: /* * keep our extent size at 1MB max, this makes it easier to work inside * the tiny block groups created during mkfs */ cur_bytes = min(total_bytes, 1024ULL * 1024); ret = btrfs_reserve_extent(trans, root, cur_bytes, 0, 0, (u64)-1, &key, 1); if (ret) goto end; first_block = key.objectid; bytes_read = 0; while (bytes_read < cur_bytes) { memset(eb->data, 0, sectorsize); ret_read = pread64(fd, eb->data, sectorsize, file_pos + bytes_read); if (ret_read == -1) { error("cannot read %s at offset %llu length %llu: %s", path_name, (unsigned long long)file_pos + bytes_read, (unsigned long long)sectorsize, strerror(errno)); goto end; } eb->start = first_block + bytes_read; eb->len = sectorsize; /* * we're doing the csum before we record the extent, but * that's ok */ ret = btrfs_csum_file_block(trans, root->fs_info->csum_root, first_block + bytes_read + sectorsize, first_block + bytes_read, eb->data, sectorsize); if (ret) goto end; ret = write_and_map_eb(trans, root, eb); if (ret) { error("failed to write %s", path_name); goto end; } bytes_read += sectorsize; } if (bytes_read) { ret = btrfs_record_file_extent(trans, root, objectid, btrfs_inode, file_pos, first_block, cur_bytes); if (ret) goto end; } file_pos += cur_bytes; total_bytes -= cur_bytes; if (total_bytes) goto again; end: free(eb); close(fd); return ret; } static char *make_path(const char *dir, const char *name) { char *path; path = malloc(strlen(dir) + strlen(name) + 2); if (!path) return NULL; strcpy(path, dir); if (dir[strlen(dir) - 1] != '/') strcat(path, "/"); strcat(path, name); return path; } static int traverse_directory(struct btrfs_trans_handle *trans, struct btrfs_root *root, const char *dir_name, struct directory_name_entry *dir_head, int out_fd) { int ret = 0; struct btrfs_inode_item cur_inode; struct btrfs_inode_item *inode_item; int count, i, dir_index_cnt; struct direct **files; struct stat st; struct directory_name_entry *dir_entry, *parent_dir_entry; struct direct *cur_file; ino_t parent_inum, cur_inum; ino_t highest_inum = 0; const char *parent_dir_name; char real_path[PATH_MAX]; struct btrfs_path path; struct extent_buffer *leaf; struct btrfs_key root_dir_key; u64 root_dir_inode_size = 0; /* Add list for source directory */ dir_entry = malloc(sizeof(struct directory_name_entry)); if (!dir_entry) return -ENOMEM; dir_entry->dir_name = dir_name; dir_entry->path = realpath(dir_name, real_path); if (!dir_entry->path) { error("realpath failed for %s: %s", dir_name, strerror(errno)); ret = -1; goto fail_no_dir; } parent_inum = highest_inum + BTRFS_FIRST_FREE_OBJECTID; dir_entry->inum = parent_inum; list_add_tail(&dir_entry->list, &dir_head->list); btrfs_init_path(&path); root_dir_key.objectid = btrfs_root_dirid(&root->root_item); root_dir_key.offset = 0; root_dir_key.type = BTRFS_INODE_ITEM_KEY; ret = btrfs_lookup_inode(trans, root, &path, &root_dir_key, 1); if (ret) { error("failed to lookup root dir: %d", ret); goto fail_no_dir; } leaf = path.nodes[0]; inode_item = btrfs_item_ptr(leaf, path.slots[0], struct btrfs_inode_item); root_dir_inode_size = calculate_dir_inode_size(dir_name); btrfs_set_inode_size(leaf, inode_item, root_dir_inode_size); btrfs_mark_buffer_dirty(leaf); btrfs_release_path(&path); do { parent_dir_entry = list_entry(dir_head->list.next, struct directory_name_entry, list); list_del(&parent_dir_entry->list); parent_inum = parent_dir_entry->inum; parent_dir_name = parent_dir_entry->dir_name; if (chdir(parent_dir_entry->path)) { error("chdir failed for %s: %s", parent_dir_name, strerror(errno)); ret = -1; goto fail_no_files; } count = scandir(parent_dir_entry->path, &files, directory_select, NULL); if (count == -1) { error("scandir failed for %s: %s", parent_dir_name, strerror (errno)); ret = -1; goto fail; } for (i = 0; i < count; i++) { cur_file = files[i]; if (lstat(cur_file->d_name, &st) == -1) { error("lstat failed for %s: %s", cur_file->d_name, strerror(errno)); ret = -1; goto fail; } cur_inum = st.st_ino; ret = add_directory_items(trans, root, cur_inum, parent_inum, cur_file->d_name, &st, &dir_index_cnt); if (ret) { error("unable to add directory items for %s: %d", cur_file->d_name, ret); goto fail; } ret = add_inode_items(trans, root, &st, cur_file->d_name, cur_inum, parent_inum, dir_index_cnt, &cur_inode); if (ret == -EEXIST) { if (st.st_nlink <= 1) { error( "item %s already exists but has wrong st_nlink %lu <= 1", cur_file->d_name, (unsigned long)st.st_nlink); goto fail; } continue; } if (ret) { error("unable to add inode items for %s: %d", cur_file->d_name, ret); goto fail; } ret = add_xattr_item(trans, root, cur_inum, cur_file->d_name); if (ret) { error("unable to add xattr items for %s: %d", cur_file->d_name, ret); if(ret != -ENOTSUP) goto fail; } if (S_ISDIR(st.st_mode)) { dir_entry = malloc(sizeof(struct directory_name_entry)); if (!dir_entry) { ret = -ENOMEM; goto fail; } dir_entry->dir_name = cur_file->d_name; dir_entry->path = make_path(parent_dir_entry->path, cur_file->d_name); dir_entry->inum = cur_inum; list_add_tail(&dir_entry->list, &dir_head->list); } else if (S_ISREG(st.st_mode)) { ret = add_file_items(trans, root, &cur_inode, cur_inum, parent_inum, &st, cur_file->d_name, out_fd); if (ret) { error("unable to add file items for %s: %d", cur_file->d_name, ret); goto fail; } } else if (S_ISLNK(st.st_mode)) { ret = add_symbolic_link(trans, root, cur_inum, cur_file->d_name); if (ret) { error("unable to add symlink for %s: %d", cur_file->d_name, ret); goto fail; } } } free_namelist(files, count); free(parent_dir_entry); index_cnt = 2; } while (!list_empty(&dir_head->list)); out: return !!ret; fail: free_namelist(files, count); fail_no_files: free(parent_dir_entry); goto out; fail_no_dir: free(dir_entry); goto out; } static int create_chunks(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 num_of_meta_chunks, u64 size_of_data, struct mkfs_allocation *allocation) { u64 chunk_start; u64 chunk_size; u64 meta_type = BTRFS_BLOCK_GROUP_METADATA; u64 data_type = BTRFS_BLOCK_GROUP_DATA; u64 minimum_data_chunk_size = 8 * 1024 * 1024; u64 i; int ret; for (i = 0; i < num_of_meta_chunks; i++) { ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root, &chunk_start, &chunk_size, meta_type); if (ret) return ret; ret = btrfs_make_block_group(trans, root->fs_info->extent_root, 0, meta_type, BTRFS_FIRST_CHUNK_TREE_OBJECTID, chunk_start, chunk_size); allocation->metadata += chunk_size; if (ret) return ret; set_extent_dirty(&root->fs_info->free_space_cache, chunk_start, chunk_start + chunk_size - 1, 0); } if (size_of_data < minimum_data_chunk_size) size_of_data = minimum_data_chunk_size; ret = btrfs_alloc_data_chunk(trans, root->fs_info->extent_root, &chunk_start, size_of_data, data_type, 0); if (ret) return ret; ret = btrfs_make_block_group(trans, root->fs_info->extent_root, 0, data_type, BTRFS_FIRST_CHUNK_TREE_OBJECTID, chunk_start, size_of_data); allocation->data += size_of_data; if (ret) return ret; set_extent_dirty(&root->fs_info->free_space_cache, chunk_start, chunk_start + size_of_data - 1, 0); return ret; } static int make_image(const char *source_dir, struct btrfs_root *root, int out_fd) { int ret; struct btrfs_trans_handle *trans; struct stat root_st; struct directory_name_entry dir_head; struct directory_name_entry *dir_entry = NULL; ret = lstat(source_dir, &root_st); if (ret) { error("unable to lstat %s: %s", source_dir, strerror(errno)); ret = -errno; goto out; } INIT_LIST_HEAD(&dir_head.list); trans = btrfs_start_transaction(root, 1); ret = traverse_directory(trans, root, source_dir, &dir_head, out_fd); if (ret) { error("unable to traverse directory %s: %d", source_dir, ret); goto fail; } ret = btrfs_commit_transaction(trans, root); if (ret) { error("transaction commit failed: %d", ret); goto out; } if (verbose) printf("Making image is completed.\n"); return 0; fail: while (!list_empty(&dir_head.list)) { dir_entry = list_entry(dir_head.list.next, struct directory_name_entry, list); list_del(&dir_entry->list); free(dir_entry); } out: return ret; } /* * This ignores symlinks with unreadable targets and subdirs that can't * be read. It's a best-effort to give a rough estimate of the size of * a subdir. It doesn't guarantee that prepopulating btrfs from this * tree won't still run out of space. */ static u64 global_total_size; static u64 fs_block_size; static int ftw_add_entry_size(const char *fpath, const struct stat *st, int type) { if (type == FTW_F || type == FTW_D) global_total_size += round_up(st->st_size, fs_block_size); return 0; } static u64 size_sourcedir(const char *dir_name, u64 sectorsize, u64 *num_of_meta_chunks_ret, u64 *size_of_data_ret) { u64 dir_size = 0; u64 total_size = 0; int ret; u64 default_chunk_size = 8 * 1024 * 1024; /* 8MB */ u64 allocated_meta_size = 8 * 1024 * 1024; /* 8MB */ u64 allocated_total_size = 20 * 1024 * 1024; /* 20MB */ u64 num_of_meta_chunks = 0; u64 num_of_data_chunks = 0; u64 num_of_allocated_meta_chunks = allocated_meta_size / default_chunk_size; global_total_size = 0; fs_block_size = sectorsize; ret = ftw(dir_name, ftw_add_entry_size, 10); dir_size = global_total_size; if (ret < 0) { error("ftw subdir walk of %s failed: %s", dir_name, strerror(errno)); exit(1); } num_of_data_chunks = (dir_size + default_chunk_size - 1) / default_chunk_size; num_of_meta_chunks = (dir_size / 2) / default_chunk_size; if (((dir_size / 2) % default_chunk_size) != 0) num_of_meta_chunks++; if (num_of_meta_chunks <= num_of_allocated_meta_chunks) num_of_meta_chunks = 0; else num_of_meta_chunks -= num_of_allocated_meta_chunks; total_size = allocated_total_size + (num_of_data_chunks * default_chunk_size) + (num_of_meta_chunks * default_chunk_size); *num_of_meta_chunks_ret = num_of_meta_chunks; *size_of_data_ret = num_of_data_chunks * default_chunk_size; return total_size; } static int zero_output_file(int out_fd, u64 size) { int loop_num; u64 location = 0; char buf[4096]; int ret = 0, i; ssize_t written; memset(buf, 0, 4096); loop_num = size / 4096; for (i = 0; i < loop_num; i++) { written = pwrite64(out_fd, buf, 4096, location); if (written != 4096) ret = -EIO; location += 4096; } return ret; } static int is_ssd(const char *file) { blkid_probe probe; char wholedisk[PATH_MAX]; char sysfs_path[PATH_MAX]; dev_t devno; int fd; char rotational; int ret; probe = blkid_new_probe_from_filename(file); if (!probe) return 0; /* Device number of this disk (possibly a partition) */ devno = blkid_probe_get_devno(probe); if (!devno) { blkid_free_probe(probe); return 0; } /* Get whole disk name (not full path) for this devno */ ret = blkid_devno_to_wholedisk(devno, wholedisk, sizeof(wholedisk), NULL); if (ret) { blkid_free_probe(probe); return 0; } snprintf(sysfs_path, PATH_MAX, "/sys/block/%s/queue/rotational", wholedisk); blkid_free_probe(probe); fd = open(sysfs_path, O_RDONLY); if (fd < 0) { return 0; } if (read(fd, &rotational, 1) < 1) { close(fd); return 0; } close(fd); return rotational == '0'; } static int _cmp_device_by_id(void *priv, struct list_head *a, struct list_head *b) { return list_entry(a, struct btrfs_device, dev_list)->devid - list_entry(b, struct btrfs_device, dev_list)->devid; } static void list_all_devices(struct btrfs_root *root) { struct btrfs_fs_devices *fs_devices; struct btrfs_device *device; int number_of_devices = 0; u64 total_block_count = 0; fs_devices = root->fs_info->fs_devices; list_for_each_entry(device, &fs_devices->devices, dev_list) number_of_devices++; list_sort(NULL, &fs_devices->devices, _cmp_device_by_id); printf("Number of devices: %d\n", number_of_devices); /* printf("Total devices size: %10s\n", */ /* pretty_size(total_block_count)); */ printf("Devices:\n"); printf(" ID SIZE PATH\n"); list_for_each_entry(device, &fs_devices->devices, dev_list) { printf(" %3llu %10s %s\n", device->devid, pretty_size(device->total_bytes), device->name); total_block_count += device->total_bytes; } printf("\n"); } static int is_temp_block_group(struct extent_buffer *node, struct btrfs_block_group_item *bgi, u64 data_profile, u64 meta_profile, u64 sys_profile) { u64 flag = btrfs_disk_block_group_flags(node, bgi); u64 flag_type = flag & BTRFS_BLOCK_GROUP_TYPE_MASK; u64 flag_profile = flag & BTRFS_BLOCK_GROUP_PROFILE_MASK; u64 used = btrfs_disk_block_group_used(node, bgi); /* * Chunks meets all the following conditions is a temp chunk * 1) Empty chunk * Temp chunk is always empty. * * 2) profile mismatch with mkfs profile. * Temp chunk is always in SINGLE * * 3) Size differs with mkfs_alloc * Special case for SINGLE/SINGLE btrfs. * In that case, temp data chunk and real data chunk are always empty. * So we need to use mkfs_alloc to be sure which chunk is the newly * allocated. * * Normally, new chunk size is equal to mkfs one (One chunk) * If it has multiple chunks, we just refuse to delete any one. * As they are all single, so no real problem will happen. * So only use condition 1) and 2) to judge them. */ if (used != 0) return 0; switch (flag_type) { case BTRFS_BLOCK_GROUP_DATA: case BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA: data_profile &= BTRFS_BLOCK_GROUP_PROFILE_MASK; if (flag_profile != data_profile) return 1; break; case BTRFS_BLOCK_GROUP_METADATA: meta_profile &= BTRFS_BLOCK_GROUP_PROFILE_MASK; if (flag_profile != meta_profile) return 1; break; case BTRFS_BLOCK_GROUP_SYSTEM: sys_profile &= BTRFS_BLOCK_GROUP_PROFILE_MASK; if (flag_profile != sys_profile) return 1; break; } return 0; } /* Note: if current is a block group, it will skip it anyway */ static int next_block_group(struct btrfs_root *root, struct btrfs_path *path) { struct btrfs_key key; int ret = 0; while (1) { ret = btrfs_next_item(root, path); if (ret) goto out; btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); if (key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) goto out; } out: return ret; } /* This function will cleanup */ static int cleanup_temp_chunks(struct btrfs_fs_info *fs_info, struct mkfs_allocation *alloc, u64 data_profile, u64 meta_profile, u64 sys_profile) { struct btrfs_trans_handle *trans = NULL; struct btrfs_block_group_item *bgi; struct btrfs_root *root = fs_info->extent_root; struct btrfs_key key; struct btrfs_key found_key; struct btrfs_path path; int ret = 0; btrfs_init_path(&path); trans = btrfs_start_transaction(root, 1); key.objectid = 0; key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; key.offset = 0; while (1) { /* * as the rest of the loop may modify the tree, we need to * start a new search each time. */ ret = btrfs_search_slot(trans, root, &key, &path, 0, 0); if (ret < 0) goto out; btrfs_item_key_to_cpu(path.nodes[0], &found_key, path.slots[0]); if (found_key.objectid < key.objectid) goto out; if (found_key.type != BTRFS_BLOCK_GROUP_ITEM_KEY) { ret = next_block_group(root, &path); if (ret < 0) goto out; if (ret > 0) { ret = 0; goto out; } btrfs_item_key_to_cpu(path.nodes[0], &found_key, path.slots[0]); } bgi = btrfs_item_ptr(path.nodes[0], path.slots[0], struct btrfs_block_group_item); if (is_temp_block_group(path.nodes[0], bgi, data_profile, meta_profile, sys_profile)) { u64 flags = btrfs_disk_block_group_flags(path.nodes[0], bgi); ret = btrfs_free_block_group(trans, fs_info, found_key.objectid, found_key.offset); if (ret < 0) goto out; if ((flags & BTRFS_BLOCK_GROUP_TYPE_MASK) == BTRFS_BLOCK_GROUP_DATA) alloc->data -= found_key.offset; else if ((flags & BTRFS_BLOCK_GROUP_TYPE_MASK) == BTRFS_BLOCK_GROUP_METADATA) alloc->metadata -= found_key.offset; else if ((flags & BTRFS_BLOCK_GROUP_TYPE_MASK) == BTRFS_BLOCK_GROUP_SYSTEM) alloc->system -= found_key.offset; else if ((flags & BTRFS_BLOCK_GROUP_TYPE_MASK) == (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA)) alloc->mixed -= found_key.offset; } btrfs_release_path(&path); key.objectid = found_key.objectid + found_key.offset; } out: if (trans) btrfs_commit_transaction(trans, root); btrfs_release_path(&path); return ret; } int main(int argc, char **argv) { char *file; struct btrfs_root *root; struct btrfs_fs_info *fs_info; struct btrfs_trans_handle *trans; char *label = NULL; u64 block_count = 0; u64 dev_block_count = 0; u64 blocks[7]; u64 alloc_start = 0; u64 metadata_profile = 0; u64 data_profile = 0; u32 nodesize = max_t(u32, sysconf(_SC_PAGESIZE), BTRFS_MKFS_DEFAULT_NODE_SIZE); u32 sectorsize = 4096; u32 stripesize = 4096; int zero_end = 1; int fd; int ret; int i; int mixed = 0; int nodesize_forced = 0; int data_profile_opt = 0; int metadata_profile_opt = 0; int discard = 1; int ssd = 0; int force_overwrite = 0; char *source_dir = NULL; int source_dir_set = 0; u64 num_of_meta_chunks = 0; u64 size_of_data = 0; u64 source_dir_size = 0; int dev_cnt = 0; int saved_optind; char fs_uuid[BTRFS_UUID_UNPARSED_SIZE] = { 0 }; u64 features = BTRFS_MKFS_DEFAULT_FEATURES; struct mkfs_allocation allocation = { 0 }; struct btrfs_mkfs_config mkfs_cfg; while(1) { int c; static const struct option long_options[] = { { "alloc-start", required_argument, NULL, 'A'}, { "byte-count", required_argument, NULL, 'b' }, { "force", no_argument, NULL, 'f' }, { "leafsize", required_argument, NULL, 'l' }, { "label", required_argument, NULL, 'L'}, { "metadata", required_argument, NULL, 'm' }, { "mixed", no_argument, NULL, 'M' }, { "nodesize", required_argument, NULL, 'n' }, { "sectorsize", required_argument, NULL, 's' }, { "data", required_argument, NULL, 'd' }, { "version", no_argument, NULL, 'V' }, { "rootdir", required_argument, NULL, 'r' }, { "nodiscard", no_argument, NULL, 'K' }, { "features", required_argument, NULL, 'O' }, { "uuid", required_argument, NULL, 'U' }, { "quiet", 0, NULL, 'q' }, { "help", no_argument, NULL, GETOPT_VAL_HELP }, { NULL, 0, NULL, 0} }; c = getopt_long(argc, argv, "A:b:fl:n:s:m:d:L:O:r:U:VMKq", long_options, NULL); if (c < 0) break; switch(c) { case 'A': alloc_start = parse_size(optarg); break; case 'f': force_overwrite = 1; break; case 'd': data_profile = parse_profile(optarg); data_profile_opt = 1; break; case 'l': warning("--leafsize is deprecated, use --nodesize"); /* fall through */ case 'n': nodesize = parse_size(optarg); nodesize_forced = 1; break; case 'L': label = parse_label(optarg); break; case 'm': metadata_profile = parse_profile(optarg); metadata_profile_opt = 1; break; case 'M': mixed = 1; break; case 'O': { char *orig = strdup(optarg); char *tmp = orig; tmp = btrfs_parse_fs_features(tmp, &features); if (tmp) { error("unrecognized filesystem feature '%s'", tmp); free(orig); exit(1); } free(orig); if (features & BTRFS_FEATURE_LIST_ALL) { btrfs_list_all_fs_features(0); exit(0); } break; } case 's': sectorsize = parse_size(optarg); break; case 'b': block_count = parse_size(optarg); zero_end = 0; break; case 'V': printf("mkfs.btrfs, part of %s\n", PACKAGE_STRING); exit(0); break; case 'r': source_dir = optarg; source_dir_set = 1; break; case 'U': strncpy(fs_uuid, optarg, BTRFS_UUID_UNPARSED_SIZE - 1); break; case 'K': discard = 0; break; case 'q': verbose = 0; break; case GETOPT_VAL_HELP: default: print_usage(c != GETOPT_VAL_HELP); } } if (verbose) { printf("%s\n", PACKAGE_STRING); printf("See %s for more information.\n\n", PACKAGE_URL); } sectorsize = max(sectorsize, (u32)sysconf(_SC_PAGESIZE)); stripesize = sectorsize; saved_optind = optind; dev_cnt = argc - optind; if (dev_cnt == 0) print_usage(1); if (source_dir_set && dev_cnt > 1) { error("the option -r is limited to a single device"); exit(1); } if (*fs_uuid) { uuid_t dummy_uuid; if (uuid_parse(fs_uuid, dummy_uuid) != 0) { error("could not parse UUID: %s", fs_uuid); exit(1); } if (!test_uuid_unique(fs_uuid)) { error("non-unique UUID: %s", fs_uuid); exit(1); } } while (dev_cnt-- > 0) { file = argv[optind++]; if (is_block_device(file) == 1) if (test_dev_for_mkfs(file, force_overwrite)) exit(1); } optind = saved_optind; dev_cnt = argc - optind; file = argv[optind++]; ssd = is_ssd(file); /* * Set default profiles according to number of added devices. * For mixed groups defaults are single/single. */ if (!mixed) { if (!metadata_profile_opt) { if (dev_cnt == 1 && ssd && verbose) printf("Detected a SSD, turning off metadata " "duplication. Mkfs with -m dup if you want to " "force metadata duplication.\n"); metadata_profile = (dev_cnt > 1) ? BTRFS_BLOCK_GROUP_RAID1 : (ssd) ? 0: BTRFS_BLOCK_GROUP_DUP; } if (!data_profile_opt) { data_profile = (dev_cnt > 1) ? BTRFS_BLOCK_GROUP_RAID0 : 0; /* raid0 or single */ } } else { u32 best_nodesize = max_t(u32, sysconf(_SC_PAGESIZE), sectorsize); if (metadata_profile_opt || data_profile_opt) { if (metadata_profile != data_profile) { error( "with mixed block groups data and metadata profiles must be the same"); exit(1); } } if (!nodesize_forced) nodesize = best_nodesize; } /* * FS features that can be set by other means than -O * just set the bit here */ if (mixed) features |= BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS; if ((data_profile | metadata_profile) & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) { features |= BTRFS_FEATURE_INCOMPAT_RAID56; } if (btrfs_check_nodesize(nodesize, sectorsize, features)) exit(1); if (sectorsize < sizeof(struct btrfs_super_block)) { error("sectorsize smaller than superblock: %u < %zu", sectorsize, sizeof(struct btrfs_super_block)); exit(1); } /* Check device/block_count after the nodesize is determined */ if (block_count && block_count < btrfs_min_dev_size(nodesize)) { error("size %llu is too small to make a usable filesystem", block_count); error("minimum size for btrfs filesystem is %llu", btrfs_min_dev_size(nodesize)); exit(1); } for (i = saved_optind; i < saved_optind + dev_cnt; i++) { char *path; path = argv[i]; ret = test_minimum_size(path, nodesize); if (ret < 0) { error("failed to check size for %s: %s", path, strerror(-ret)); exit (1); } if (ret > 0) { error("'%s' is too small to make a usable filesystem", path); error("minimum size for each btrfs device is %llu", btrfs_min_dev_size(nodesize)); exit(1); } } ret = test_num_disk_vs_raid(metadata_profile, data_profile, dev_cnt, mixed, ssd); if (ret) exit(1); dev_cnt--; if (!source_dir_set) { /* * open without O_EXCL so that the problem should not * occur by the following processing. * (btrfs_register_one_device() fails if O_EXCL is on) */ fd = open(file, O_RDWR); if (fd < 0) { error("unable to open %s: %s", file, strerror(errno)); exit(1); } ret = btrfs_prepare_device(fd, file, &dev_block_count, block_count, (zero_end ? PREP_DEVICE_ZERO_END : 0) | (discard ? PREP_DEVICE_DISCARD : 0) | (verbose ? PREP_DEVICE_VERBOSE : 0)); if (ret) { close(fd); exit(1); } if (block_count && block_count > dev_block_count) { error("%s is smaller than requested size, expected %llu, found %llu", file, (unsigned long long)block_count, (unsigned long long)dev_block_count); exit(1); } } else { fd = open(file, O_CREAT | O_RDWR, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH); if (fd < 0) { error("unable to open %s: %s", file, strerror(errno)); exit(1); } source_dir_size = size_sourcedir(source_dir, sectorsize, &num_of_meta_chunks, &size_of_data); if(block_count < source_dir_size) block_count = source_dir_size; ret = zero_output_file(fd, block_count); if (ret) { error("unable to zero the output file"); exit(1); } /* our "device" is the new image file */ dev_block_count = block_count; } /* To create the first block group and chunk 0 in make_btrfs */ if (dev_block_count < BTRFS_MKFS_SYSTEM_GROUP_SIZE) { error("device is too small to make filesystem, must be at least %llu", (unsigned long long)BTRFS_MKFS_SYSTEM_GROUP_SIZE); exit(1); } blocks[0] = BTRFS_SUPER_INFO_OFFSET; for (i = 1; i < 7; i++) { blocks[i] = BTRFS_SUPER_INFO_OFFSET + 1024 * 1024 + nodesize * i; } if (group_profile_max_safe_loss(metadata_profile) < group_profile_max_safe_loss(data_profile)){ warning("metadata has lower redundancy than data!\n"); } mkfs_cfg.label = label; memcpy(mkfs_cfg.fs_uuid, fs_uuid, sizeof(mkfs_cfg.fs_uuid)); memcpy(mkfs_cfg.blocks, blocks, sizeof(blocks)); mkfs_cfg.num_bytes = dev_block_count; mkfs_cfg.nodesize = nodesize; mkfs_cfg.sectorsize = sectorsize; mkfs_cfg.stripesize = stripesize; mkfs_cfg.features = features; ret = make_btrfs(fd, &mkfs_cfg, NULL); if (ret) { error("error during mkfs: %s", strerror(-ret)); exit(1); } fs_info = open_ctree_fs_info(file, 0, 0, 0, OPEN_CTREE_WRITES | OPEN_CTREE_FS_PARTIAL); if (!fs_info) { error("open ctree failed"); close(fd); exit(1); } root = fs_info->fs_root; fs_info->alloc_start = alloc_start; ret = create_metadata_block_groups(root, mixed, &allocation); if (ret) { error("failed to create default block groups: %d", ret); exit(1); } trans = btrfs_start_transaction(root, 1); if (!trans) { error("failed to start transaction"); exit(1); } ret = create_data_block_groups(trans, root, mixed, &allocation); if (ret) { error("failed to create default data block groups: %d", ret); exit(1); } ret = make_root_dir(trans, root, &allocation); if (ret) { error("failed to setup the root directory: %d", ret); exit(1); } ret = btrfs_commit_transaction(trans, root); if (ret) { error("unable to commit transaction: %d", ret); goto out; } trans = btrfs_start_transaction(root, 1); if (!trans) { error("failed to start transaction"); exit(1); } if (dev_cnt == 0) goto raid_groups; while (dev_cnt-- > 0) { file = argv[optind++]; /* * open without O_EXCL so that the problem should not * occur by the following processing. * (btrfs_register_one_device() fails if O_EXCL is on) */ fd = open(file, O_RDWR); if (fd < 0) { error("unable to open %s: %s", file, strerror(errno)); exit(1); } ret = btrfs_device_already_in_root(root, fd, BTRFS_SUPER_INFO_OFFSET); if (ret) { error("skipping duplicate device %s in the filesystem", file); close(fd); continue; } ret = btrfs_prepare_device(fd, file, &dev_block_count, block_count, (verbose ? PREP_DEVICE_VERBOSE : 0) | (zero_end ? PREP_DEVICE_ZERO_END : 0) | (discard ? PREP_DEVICE_DISCARD : 0)); if (ret) { close(fd); exit(1); } ret = btrfs_add_to_fsid(trans, root, fd, file, dev_block_count, sectorsize, sectorsize, sectorsize); if (ret) { error("unable to add %s to filesystem: %d", file, ret); goto out; } if (verbose >= 2) { struct btrfs_device *device; device = container_of(fs_info->fs_devices->devices.next, struct btrfs_device, dev_list); printf("adding device %s id %llu\n", file, (unsigned long long)device->devid); } } raid_groups: if (!source_dir_set) { ret = create_raid_groups(trans, root, data_profile, metadata_profile, mixed, &allocation); if (ret) { error("unable to create raid groups: %d", ret); goto out; } } ret = create_data_reloc_tree(trans, root); if (ret) { error("unable to create data reloc tree: %d", ret); goto out; } ret = btrfs_commit_transaction(trans, root); if (ret) { error("unable to commit transaction: %d", ret); goto out; } if (source_dir_set) { trans = btrfs_start_transaction(root, 1); ret = create_chunks(trans, root, num_of_meta_chunks, size_of_data, &allocation); if (ret) { error("unable to create chunks: %d", ret); goto out; } ret = btrfs_commit_transaction(trans, root); if (ret) { error("transaction commit failed: %d", ret); goto out; } ret = make_image(source_dir, root, fd); if (ret) { error("error wihle filling filesystem: %d", ret); goto out; } } ret = cleanup_temp_chunks(fs_info, &allocation, data_profile, metadata_profile, metadata_profile); if (ret < 0) { error("failed to cleanup temporary chunks: %d", ret); goto out; } if (verbose) { char features_buf[64]; printf("Label: %s\n", label); printf("UUID: %s\n", mkfs_cfg.fs_uuid); printf("Node size: %u\n", nodesize); printf("Sector size: %u\n", sectorsize); printf("Filesystem size: %s\n", pretty_size(btrfs_super_total_bytes(fs_info->super_copy))); printf("Block group profiles:\n"); if (allocation.data) printf(" Data: %-8s %16s\n", btrfs_group_profile_str(data_profile), pretty_size(allocation.data)); if (allocation.metadata) printf(" Metadata: %-8s %16s\n", btrfs_group_profile_str(metadata_profile), pretty_size(allocation.metadata)); if (allocation.mixed) printf(" Data+Metadata: %-8s %16s\n", btrfs_group_profile_str(data_profile), pretty_size(allocation.mixed)); printf(" System: %-8s %16s\n", btrfs_group_profile_str(metadata_profile), pretty_size(allocation.system)); printf("SSD detected: %s\n", ssd ? "yes" : "no"); btrfs_parse_features_to_string(features_buf, features); printf("Incompat features: %s", features_buf); printf("\n"); list_all_devices(root); } /* * The filesystem is now fully set up, commit the remaining changes and * fix the signature as the last step before closing the devices. */ fs_info->finalize_on_close = 1; out: ret = close_ctree(root); if (!ret) { optind = saved_optind; dev_cnt = argc - optind; while (dev_cnt-- > 0) { file = argv[optind++]; if (is_block_device(file) == 1) btrfs_register_one_device(file); } } btrfs_close_all_devices(); free(label); return !!ret; }