/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #define _XOPEN_SOURCE 600 #define __USE_XOPEN2K #include #include #include #include #include #include #include #include "ctree.h" #include "disk-io.h" #include "transaction.h" #include "print-tree.h" #include "volumes.h" #include "math.h" struct stripe { struct btrfs_device *dev; u64 physical; }; static inline int nr_parity_stripes(struct map_lookup *map) { if (map->type & BTRFS_BLOCK_GROUP_RAID5) return 1; else if (map->type & BTRFS_BLOCK_GROUP_RAID6) return 2; else return 0; } static inline int nr_data_stripes(struct map_lookup *map) { return map->num_stripes - nr_parity_stripes(map); } #define is_parity_stripe(x) ( ((x) == BTRFS_RAID5_P_STRIPE) || ((x) == BTRFS_RAID6_Q_STRIPE) ) static LIST_HEAD(fs_uuids); static struct btrfs_device *__find_device(struct list_head *head, u64 devid, u8 *uuid) { struct btrfs_device *dev; struct list_head *cur; list_for_each(cur, head) { dev = list_entry(cur, struct btrfs_device, dev_list); if (dev->devid == devid && !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE)) { return dev; } } return NULL; } static struct btrfs_fs_devices *find_fsid(u8 *fsid) { struct list_head *cur; struct btrfs_fs_devices *fs_devices; list_for_each(cur, &fs_uuids) { fs_devices = list_entry(cur, struct btrfs_fs_devices, list); if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) return fs_devices; } return NULL; } static int device_list_add(const char *path, struct btrfs_super_block *disk_super, u64 devid, struct btrfs_fs_devices **fs_devices_ret) { struct btrfs_device *device; struct btrfs_fs_devices *fs_devices; u64 found_transid = btrfs_super_generation(disk_super); fs_devices = find_fsid(disk_super->fsid); if (!fs_devices) { fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS); if (!fs_devices) return -ENOMEM; INIT_LIST_HEAD(&fs_devices->devices); list_add(&fs_devices->list, &fs_uuids); memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE); fs_devices->latest_devid = devid; fs_devices->latest_trans = found_transid; fs_devices->lowest_devid = (u64)-1; device = NULL; } else { device = __find_device(&fs_devices->devices, devid, disk_super->dev_item.uuid); } if (!device) { device = kzalloc(sizeof(*device), GFP_NOFS); if (!device) { /* we can safely leave the fs_devices entry around */ return -ENOMEM; } device->fd = -1; device->devid = devid; memcpy(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); device->name = kstrdup(path, GFP_NOFS); if (!device->name) { kfree(device); return -ENOMEM; } device->label = kstrdup(disk_super->label, GFP_NOFS); if (!device->label) { kfree(device->name); kfree(device); return -ENOMEM; } device->total_devs = btrfs_super_num_devices(disk_super); device->super_bytes_used = btrfs_super_bytes_used(disk_super); device->total_bytes = btrfs_stack_device_total_bytes(&disk_super->dev_item); device->bytes_used = btrfs_stack_device_bytes_used(&disk_super->dev_item); list_add(&device->dev_list, &fs_devices->devices); device->fs_devices = fs_devices; } else if (!device->name || strcmp(device->name, path)) { char *name = strdup(path); if (!name) return -ENOMEM; kfree(device->name); device->name = name; } if (found_transid > fs_devices->latest_trans) { fs_devices->latest_devid = devid; fs_devices->latest_trans = found_transid; } if (fs_devices->lowest_devid > devid) { fs_devices->lowest_devid = devid; } *fs_devices_ret = fs_devices; return 0; } int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) { struct btrfs_fs_devices *seed_devices; struct btrfs_device *device; again: while (!list_empty(&fs_devices->devices)) { device = list_entry(fs_devices->devices.next, struct btrfs_device, dev_list); if (device->fd != -1) { fsync(device->fd); if (posix_fadvise(device->fd, 0, 0, POSIX_FADV_DONTNEED)) fprintf(stderr, "Warning, could not drop caches\n"); close(device->fd); device->fd = -1; } device->writeable = 0; list_del(&device->dev_list); /* free the memory */ free(device->name); free(device->label); free(device); } seed_devices = fs_devices->seed; fs_devices->seed = NULL; if (seed_devices) { fs_devices = seed_devices; goto again; } list_del(&fs_devices->list); free(fs_devices); return 0; } int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, int flags) { int fd; struct list_head *head = &fs_devices->devices; struct list_head *cur; struct btrfs_device *device; int ret; list_for_each(cur, head) { device = list_entry(cur, struct btrfs_device, dev_list); if (!device->name) { printk("no name for device %llu, skip it now\n", device->devid); continue; } fd = open(device->name, flags); if (fd < 0) { ret = -errno; goto fail; } if (posix_fadvise(fd, 0, 0, POSIX_FADV_DONTNEED)) fprintf(stderr, "Warning, could not drop caches\n"); if (device->devid == fs_devices->latest_devid) fs_devices->latest_bdev = fd; if (device->devid == fs_devices->lowest_devid) fs_devices->lowest_bdev = fd; device->fd = fd; if (flags & O_RDWR) device->writeable = 1; } return 0; fail: btrfs_close_devices(fs_devices); return ret; } int btrfs_scan_one_device(int fd, const char *path, struct btrfs_fs_devices **fs_devices_ret, u64 *total_devs, u64 super_offset, int super_recover) { struct btrfs_super_block *disk_super; char *buf; int ret; u64 devid; buf = malloc(4096); if (!buf) { ret = -ENOMEM; goto error; } disk_super = (struct btrfs_super_block *)buf; ret = btrfs_read_dev_super(fd, disk_super, super_offset, super_recover); if (ret < 0) { ret = -EIO; goto error_brelse; } devid = btrfs_stack_device_id(&disk_super->dev_item); if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_METADUMP) *total_devs = 1; else *total_devs = btrfs_super_num_devices(disk_super); ret = device_list_add(path, disk_super, devid, fs_devices_ret); error_brelse: free(buf); error: return ret; } /* * this uses a pretty simple search, the expectation is that it is * called very infrequently and that a given device has a small number * of extents */ static int find_free_dev_extent(struct btrfs_trans_handle *trans, struct btrfs_device *device, struct btrfs_path *path, u64 num_bytes, u64 *start) { struct btrfs_key key; struct btrfs_root *root = device->dev_root; struct btrfs_dev_extent *dev_extent = NULL; u64 hole_size = 0; u64 last_byte = 0; u64 search_start = root->fs_info->alloc_start; u64 search_end = device->total_bytes; int ret; int slot = 0; int start_found; struct extent_buffer *l; start_found = 0; path->reada = 2; /* FIXME use last free of some kind */ /* we don't want to overwrite the superblock on the drive, * so we make sure to start at an offset of at least 1MB */ search_start = max(BTRFS_BLOCK_RESERVED_1M_FOR_SUPER, search_start); if (search_start >= search_end) { ret = -ENOSPC; goto error; } key.objectid = device->devid; key.offset = search_start; key.type = BTRFS_DEV_EXTENT_KEY; ret = btrfs_search_slot(trans, root, &key, path, 0, 0); if (ret < 0) goto error; ret = btrfs_previous_item(root, path, 0, key.type); if (ret < 0) goto error; l = path->nodes[0]; btrfs_item_key_to_cpu(l, &key, path->slots[0]); while (1) { l = path->nodes[0]; slot = path->slots[0]; if (slot >= btrfs_header_nritems(l)) { ret = btrfs_next_leaf(root, path); if (ret == 0) continue; if (ret < 0) goto error; no_more_items: if (!start_found) { if (search_start >= search_end) { ret = -ENOSPC; goto error; } *start = search_start; start_found = 1; goto check_pending; } *start = last_byte > search_start ? last_byte : search_start; if (search_end <= *start) { ret = -ENOSPC; goto error; } goto check_pending; } btrfs_item_key_to_cpu(l, &key, slot); if (key.objectid < device->devid) goto next; if (key.objectid > device->devid) goto no_more_items; if (key.offset >= search_start && key.offset > last_byte && start_found) { if (last_byte < search_start) last_byte = search_start; hole_size = key.offset - last_byte; if (key.offset > last_byte && hole_size >= num_bytes) { *start = last_byte; goto check_pending; } } if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) { goto next; } start_found = 1; dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent); next: path->slots[0]++; cond_resched(); } check_pending: /* we have to make sure we didn't find an extent that has already * been allocated by the map tree or the original allocation */ btrfs_release_path(path); BUG_ON(*start < search_start); if (*start + num_bytes > search_end) { ret = -ENOSPC; goto error; } /* check for pending inserts here */ return 0; error: btrfs_release_path(path); return ret; } static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, struct btrfs_device *device, u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 num_bytes, u64 *start) { int ret; struct btrfs_path *path; struct btrfs_root *root = device->dev_root; struct btrfs_dev_extent *extent; struct extent_buffer *leaf; struct btrfs_key key; path = btrfs_alloc_path(); if (!path) return -ENOMEM; ret = find_free_dev_extent(trans, device, path, num_bytes, start); if (ret) { goto err; } key.objectid = device->devid; key.offset = *start; key.type = BTRFS_DEV_EXTENT_KEY; ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent)); BUG_ON(ret); leaf = path->nodes[0]; extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE); btrfs_set_dev_extent_length(leaf, extent, num_bytes); btrfs_mark_buffer_dirty(leaf); err: btrfs_free_path(path); return ret; } static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset) { struct btrfs_path *path; int ret; struct btrfs_key key; struct btrfs_chunk *chunk; struct btrfs_key found_key; path = btrfs_alloc_path(); BUG_ON(!path); key.objectid = objectid; key.offset = (u64)-1; key.type = BTRFS_CHUNK_ITEM_KEY; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto error; BUG_ON(ret == 0); ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY); if (ret) { *offset = 0; } else { btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); if (found_key.objectid != objectid) *offset = 0; else { chunk = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_chunk); *offset = found_key.offset + btrfs_chunk_length(path->nodes[0], chunk); } } ret = 0; error: btrfs_free_path(path); return ret; } static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path, u64 *objectid) { int ret; struct btrfs_key key; struct btrfs_key found_key; key.objectid = BTRFS_DEV_ITEMS_OBJECTID; key.type = BTRFS_DEV_ITEM_KEY; key.offset = (u64)-1; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto error; BUG_ON(ret == 0); ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID, BTRFS_DEV_ITEM_KEY); if (ret) { *objectid = 1; } else { btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); *objectid = found_key.offset + 1; } ret = 0; error: btrfs_release_path(path); return ret; } /* * the device information is stored in the chunk root * the btrfs_device struct should be fully filled in */ int btrfs_add_device(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_device *device) { int ret; struct btrfs_path *path; struct btrfs_dev_item *dev_item; struct extent_buffer *leaf; struct btrfs_key key; unsigned long ptr; u64 free_devid = 0; root = root->fs_info->chunk_root; path = btrfs_alloc_path(); if (!path) return -ENOMEM; ret = find_next_devid(root, path, &free_devid); if (ret) goto out; key.objectid = BTRFS_DEV_ITEMS_OBJECTID; key.type = BTRFS_DEV_ITEM_KEY; key.offset = free_devid; ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*dev_item)); if (ret) goto out; leaf = path->nodes[0]; dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); device->devid = free_devid; btrfs_set_device_id(leaf, dev_item, device->devid); btrfs_set_device_generation(leaf, dev_item, 0); btrfs_set_device_type(leaf, dev_item, device->type); btrfs_set_device_io_align(leaf, dev_item, device->io_align); btrfs_set_device_io_width(leaf, dev_item, device->io_width); btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); btrfs_set_device_group(leaf, dev_item, 0); btrfs_set_device_seek_speed(leaf, dev_item, 0); btrfs_set_device_bandwidth(leaf, dev_item, 0); btrfs_set_device_start_offset(leaf, dev_item, 0); ptr = (unsigned long)btrfs_device_uuid(dev_item); write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); ptr = (unsigned long)btrfs_device_fsid(dev_item); write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); btrfs_mark_buffer_dirty(leaf); ret = 0; out: btrfs_free_path(path); return ret; } int btrfs_update_device(struct btrfs_trans_handle *trans, struct btrfs_device *device) { int ret; struct btrfs_path *path; struct btrfs_root *root; struct btrfs_dev_item *dev_item; struct extent_buffer *leaf; struct btrfs_key key; root = device->dev_root->fs_info->chunk_root; path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = BTRFS_DEV_ITEMS_OBJECTID; key.type = BTRFS_DEV_ITEM_KEY; key.offset = device->devid; ret = btrfs_search_slot(trans, root, &key, path, 0, 1); if (ret < 0) goto out; if (ret > 0) { ret = -ENOENT; goto out; } leaf = path->nodes[0]; dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); btrfs_set_device_id(leaf, dev_item, device->devid); btrfs_set_device_type(leaf, dev_item, device->type); btrfs_set_device_io_align(leaf, dev_item, device->io_align); btrfs_set_device_io_width(leaf, dev_item, device->io_width); btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes); btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); btrfs_mark_buffer_dirty(leaf); out: btrfs_free_path(path); return ret; } int btrfs_add_system_chunk(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key, struct btrfs_chunk *chunk, int item_size) { struct btrfs_super_block *super_copy = root->fs_info->super_copy; struct btrfs_disk_key disk_key; u32 array_size; u8 *ptr; array_size = btrfs_super_sys_array_size(super_copy); if (array_size + item_size + sizeof(disk_key) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) return -EFBIG; ptr = super_copy->sys_chunk_array + array_size; btrfs_cpu_key_to_disk(&disk_key, key); memcpy(ptr, &disk_key, sizeof(disk_key)); ptr += sizeof(disk_key); memcpy(ptr, chunk, item_size); item_size += sizeof(disk_key); btrfs_set_super_sys_array_size(super_copy, array_size + item_size); return 0; } static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes, int sub_stripes) { if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP)) return calc_size; else if (type & BTRFS_BLOCK_GROUP_RAID10) return calc_size * (num_stripes / sub_stripes); else if (type & BTRFS_BLOCK_GROUP_RAID5) return calc_size * (num_stripes - 1); else if (type & BTRFS_BLOCK_GROUP_RAID6) return calc_size * (num_stripes - 2); else return calc_size * num_stripes; } static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target) { /* TODO, add a way to store the preferred stripe size */ return BTRFS_STRIPE_LEN; } /* * btrfs_device_avail_bytes - count bytes available for alloc_chunk * * It is not equal to "device->total_bytes - device->bytes_used". * We do not allocate any chunk in 1M at beginning of device, and not * allowed to allocate any chunk before alloc_start if it is specified. * So search holes from max(1M, alloc_start) to device->total_bytes. */ static int btrfs_device_avail_bytes(struct btrfs_trans_handle *trans, struct btrfs_device *device, u64 *avail_bytes) { struct btrfs_path *path; struct btrfs_root *root = device->dev_root; struct btrfs_key key; struct btrfs_dev_extent *dev_extent = NULL; struct extent_buffer *l; u64 search_start = root->fs_info->alloc_start; u64 search_end = device->total_bytes; u64 extent_end = 0; u64 free_bytes = 0; int ret; int slot = 0; search_start = max(BTRFS_BLOCK_RESERVED_1M_FOR_SUPER, search_start); path = btrfs_alloc_path(); if (!path) return -ENOMEM; key.objectid = device->devid; key.offset = root->fs_info->alloc_start; key.type = BTRFS_DEV_EXTENT_KEY; path->reada = 2; ret = btrfs_search_slot(trans, root, &key, path, 0, 0); if (ret < 0) goto error; ret = btrfs_previous_item(root, path, 0, key.type); if (ret < 0) goto error; while (1) { l = path->nodes[0]; slot = path->slots[0]; if (slot >= btrfs_header_nritems(l)) { ret = btrfs_next_leaf(root, path); if (ret == 0) continue; if (ret < 0) goto error; break; } btrfs_item_key_to_cpu(l, &key, slot); if (key.objectid < device->devid) goto next; if (key.objectid > device->devid) break; if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) goto next; if (key.offset > search_end) break; if (key.offset > search_start) free_bytes += key.offset - search_start; dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); extent_end = key.offset + btrfs_dev_extent_length(l, dev_extent); if (extent_end > search_start) search_start = extent_end; if (search_start > search_end) break; next: path->slots[0]++; cond_resched(); } if (search_start < search_end) free_bytes += search_end - search_start; *avail_bytes = free_bytes; ret = 0; error: btrfs_free_path(path); return ret; } #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \ - sizeof(struct btrfs_item) \ - sizeof(struct btrfs_chunk)) \ / sizeof(struct btrfs_stripe) + 1) #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ - 2 * sizeof(struct btrfs_disk_key) \ - 2 * sizeof(struct btrfs_chunk)) \ / sizeof(struct btrfs_stripe) + 1) int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, struct btrfs_root *extent_root, u64 *start, u64 *num_bytes, u64 type) { u64 dev_offset; struct btrfs_fs_info *info = extent_root->fs_info; struct btrfs_root *chunk_root = info->chunk_root; struct btrfs_stripe *stripes; struct btrfs_device *device = NULL; struct btrfs_chunk *chunk; struct list_head private_devs; struct list_head *dev_list = &info->fs_devices->devices; struct list_head *cur; struct map_lookup *map; int min_stripe_size = 1 * 1024 * 1024; u64 calc_size = 8 * 1024 * 1024; u64 min_free; u64 max_chunk_size = 4 * calc_size; u64 avail = 0; u64 max_avail = 0; u64 percent_max; int num_stripes = 1; int max_stripes = 0; int min_stripes = 1; int sub_stripes = 0; int looped = 0; int ret; int index; int stripe_len = BTRFS_STRIPE_LEN; struct btrfs_key key; u64 offset; if (list_empty(dev_list)) { return -ENOSPC; } if (type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10 | BTRFS_BLOCK_GROUP_DUP)) { if (type & BTRFS_BLOCK_GROUP_SYSTEM) { calc_size = 8 * 1024 * 1024; max_chunk_size = calc_size * 2; min_stripe_size = 1 * 1024 * 1024; max_stripes = BTRFS_MAX_DEVS_SYS_CHUNK; } else if (type & BTRFS_BLOCK_GROUP_DATA) { calc_size = 1024 * 1024 * 1024; max_chunk_size = 10 * calc_size; min_stripe_size = 64 * 1024 * 1024; max_stripes = BTRFS_MAX_DEVS(chunk_root); } else if (type & BTRFS_BLOCK_GROUP_METADATA) { calc_size = 1024 * 1024 * 1024; max_chunk_size = 4 * calc_size; min_stripe_size = 32 * 1024 * 1024; max_stripes = BTRFS_MAX_DEVS(chunk_root); } } if (type & BTRFS_BLOCK_GROUP_RAID1) { num_stripes = min_t(u64, 2, btrfs_super_num_devices(info->super_copy)); if (num_stripes < 2) return -ENOSPC; min_stripes = 2; } if (type & BTRFS_BLOCK_GROUP_DUP) { num_stripes = 2; min_stripes = 2; } if (type & (BTRFS_BLOCK_GROUP_RAID0)) { num_stripes = btrfs_super_num_devices(info->super_copy); if (num_stripes > max_stripes) num_stripes = max_stripes; min_stripes = 2; } if (type & (BTRFS_BLOCK_GROUP_RAID10)) { num_stripes = btrfs_super_num_devices(info->super_copy); if (num_stripes > max_stripes) num_stripes = max_stripes; if (num_stripes < 4) return -ENOSPC; num_stripes &= ~(u32)1; sub_stripes = 2; min_stripes = 4; } if (type & (BTRFS_BLOCK_GROUP_RAID5)) { num_stripes = btrfs_super_num_devices(info->super_copy); if (num_stripes > max_stripes) num_stripes = max_stripes; if (num_stripes < 2) return -ENOSPC; min_stripes = 2; stripe_len = find_raid56_stripe_len(num_stripes - 1, btrfs_super_stripesize(info->super_copy)); } if (type & (BTRFS_BLOCK_GROUP_RAID6)) { num_stripes = btrfs_super_num_devices(info->super_copy); if (num_stripes > max_stripes) num_stripes = max_stripes; if (num_stripes < 3) return -ENOSPC; min_stripes = 3; stripe_len = find_raid56_stripe_len(num_stripes - 2, btrfs_super_stripesize(info->super_copy)); } /* we don't want a chunk larger than 10% of the FS */ percent_max = div_factor(btrfs_super_total_bytes(info->super_copy), 1); max_chunk_size = min(percent_max, max_chunk_size); again: if (chunk_bytes_by_type(type, calc_size, num_stripes, sub_stripes) > max_chunk_size) { calc_size = max_chunk_size; calc_size /= num_stripes; calc_size /= stripe_len; calc_size *= stripe_len; } /* we don't want tiny stripes */ calc_size = max_t(u64, calc_size, min_stripe_size); calc_size /= stripe_len; calc_size *= stripe_len; INIT_LIST_HEAD(&private_devs); cur = dev_list->next; index = 0; if (type & BTRFS_BLOCK_GROUP_DUP) min_free = calc_size * 2; else min_free = calc_size; /* build a private list of devices we will allocate from */ while(index < num_stripes) { device = list_entry(cur, struct btrfs_device, dev_list); ret = btrfs_device_avail_bytes(trans, device, &avail); if (ret) return ret; cur = cur->next; if (avail >= min_free) { list_move_tail(&device->dev_list, &private_devs); index++; if (type & BTRFS_BLOCK_GROUP_DUP) index++; } else if (avail > max_avail) max_avail = avail; if (cur == dev_list) break; } if (index < num_stripes) { list_splice(&private_devs, dev_list); if (index >= min_stripes) { num_stripes = index; if (type & (BTRFS_BLOCK_GROUP_RAID10)) { num_stripes /= sub_stripes; num_stripes *= sub_stripes; } looped = 1; goto again; } if (!looped && max_avail > 0) { looped = 1; calc_size = max_avail; goto again; } return -ENOSPC; } ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID, &offset); if (ret) return ret; key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; key.type = BTRFS_CHUNK_ITEM_KEY; key.offset = offset; chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS); if (!chunk) return -ENOMEM; map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS); if (!map) { kfree(chunk); return -ENOMEM; } stripes = &chunk->stripe; *num_bytes = chunk_bytes_by_type(type, calc_size, num_stripes, sub_stripes); index = 0; while(index < num_stripes) { struct btrfs_stripe *stripe; BUG_ON(list_empty(&private_devs)); cur = private_devs.next; device = list_entry(cur, struct btrfs_device, dev_list); /* loop over this device again if we're doing a dup group */ if (!(type & BTRFS_BLOCK_GROUP_DUP) || (index == num_stripes - 1)) list_move_tail(&device->dev_list, dev_list); ret = btrfs_alloc_dev_extent(trans, device, info->chunk_root->root_key.objectid, BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset, calc_size, &dev_offset); BUG_ON(ret); device->bytes_used += calc_size; ret = btrfs_update_device(trans, device); BUG_ON(ret); map->stripes[index].dev = device; map->stripes[index].physical = dev_offset; stripe = stripes + index; btrfs_set_stack_stripe_devid(stripe, device->devid); btrfs_set_stack_stripe_offset(stripe, dev_offset); memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); index++; } BUG_ON(!list_empty(&private_devs)); /* key was set above */ btrfs_set_stack_chunk_length(chunk, *num_bytes); btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); btrfs_set_stack_chunk_stripe_len(chunk, stripe_len); btrfs_set_stack_chunk_type(chunk, type); btrfs_set_stack_chunk_num_stripes(chunk, num_stripes); btrfs_set_stack_chunk_io_align(chunk, stripe_len); btrfs_set_stack_chunk_io_width(chunk, stripe_len); btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes); map->sector_size = extent_root->sectorsize; map->stripe_len = stripe_len; map->io_align = stripe_len; map->io_width = stripe_len; map->type = type; map->num_stripes = num_stripes; map->sub_stripes = sub_stripes; ret = btrfs_insert_item(trans, chunk_root, &key, chunk, btrfs_chunk_item_size(num_stripes)); BUG_ON(ret); *start = key.offset;; map->ce.start = key.offset; map->ce.size = *num_bytes; ret = insert_cache_extent(&info->mapping_tree.cache_tree, &map->ce); BUG_ON(ret); if (type & BTRFS_BLOCK_GROUP_SYSTEM) { ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk, btrfs_chunk_item_size(num_stripes)); BUG_ON(ret); } kfree(chunk); return ret; } int btrfs_alloc_data_chunk(struct btrfs_trans_handle *trans, struct btrfs_root *extent_root, u64 *start, u64 num_bytes, u64 type) { u64 dev_offset; struct btrfs_fs_info *info = extent_root->fs_info; struct btrfs_root *chunk_root = info->chunk_root; struct btrfs_stripe *stripes; struct btrfs_device *device = NULL; struct btrfs_chunk *chunk; struct list_head *dev_list = &info->fs_devices->devices; struct list_head *cur; struct map_lookup *map; u64 calc_size = 8 * 1024 * 1024; int num_stripes = 1; int sub_stripes = 0; int ret; int index; int stripe_len = BTRFS_STRIPE_LEN; struct btrfs_key key; key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; key.type = BTRFS_CHUNK_ITEM_KEY; ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID, &key.offset); if (ret) return ret; chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS); if (!chunk) return -ENOMEM; map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS); if (!map) { kfree(chunk); return -ENOMEM; } stripes = &chunk->stripe; calc_size = num_bytes; index = 0; cur = dev_list->next; device = list_entry(cur, struct btrfs_device, dev_list); while (index < num_stripes) { struct btrfs_stripe *stripe; ret = btrfs_alloc_dev_extent(trans, device, info->chunk_root->root_key.objectid, BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset, calc_size, &dev_offset); BUG_ON(ret); device->bytes_used += calc_size; ret = btrfs_update_device(trans, device); BUG_ON(ret); map->stripes[index].dev = device; map->stripes[index].physical = dev_offset; stripe = stripes + index; btrfs_set_stack_stripe_devid(stripe, device->devid); btrfs_set_stack_stripe_offset(stripe, dev_offset); memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); index++; } /* key was set above */ btrfs_set_stack_chunk_length(chunk, num_bytes); btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); btrfs_set_stack_chunk_stripe_len(chunk, stripe_len); btrfs_set_stack_chunk_type(chunk, type); btrfs_set_stack_chunk_num_stripes(chunk, num_stripes); btrfs_set_stack_chunk_io_align(chunk, stripe_len); btrfs_set_stack_chunk_io_width(chunk, stripe_len); btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes); map->sector_size = extent_root->sectorsize; map->stripe_len = stripe_len; map->io_align = stripe_len; map->io_width = stripe_len; map->type = type; map->num_stripes = num_stripes; map->sub_stripes = sub_stripes; ret = btrfs_insert_item(trans, chunk_root, &key, chunk, btrfs_chunk_item_size(num_stripes)); BUG_ON(ret); *start = key.offset; map->ce.start = key.offset; map->ce.size = num_bytes; ret = insert_cache_extent(&info->mapping_tree.cache_tree, &map->ce); BUG_ON(ret); kfree(chunk); return ret; } int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len) { struct cache_extent *ce; struct map_lookup *map; int ret; ce = search_cache_extent(&map_tree->cache_tree, logical); BUG_ON(!ce); BUG_ON(ce->start > logical || ce->start + ce->size < logical); map = container_of(ce, struct map_lookup, ce); if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) ret = map->num_stripes; else if (map->type & BTRFS_BLOCK_GROUP_RAID10) ret = map->sub_stripes; else if (map->type & BTRFS_BLOCK_GROUP_RAID5) ret = 2; else if (map->type & BTRFS_BLOCK_GROUP_RAID6) ret = 3; else ret = 1; return ret; } int btrfs_next_metadata(struct btrfs_mapping_tree *map_tree, u64 *logical, u64 *size) { struct cache_extent *ce; struct map_lookup *map; ce = search_cache_extent(&map_tree->cache_tree, *logical); while (ce) { ce = next_cache_extent(ce); if (!ce) return -ENOENT; map = container_of(ce, struct map_lookup, ce); if (map->type & BTRFS_BLOCK_GROUP_METADATA) { *logical = ce->start; *size = ce->size; return 0; } } return -ENOENT; } int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, u64 chunk_start, u64 physical, u64 devid, u64 **logical, int *naddrs, int *stripe_len) { struct cache_extent *ce; struct map_lookup *map; u64 *buf; u64 bytenr; u64 length; u64 stripe_nr; u64 rmap_len; int i, j, nr = 0; ce = search_cache_extent(&map_tree->cache_tree, chunk_start); BUG_ON(!ce); map = container_of(ce, struct map_lookup, ce); length = ce->size; rmap_len = map->stripe_len; if (map->type & BTRFS_BLOCK_GROUP_RAID10) length = ce->size / (map->num_stripes / map->sub_stripes); else if (map->type & BTRFS_BLOCK_GROUP_RAID0) length = ce->size / map->num_stripes; else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) { length = ce->size / nr_data_stripes(map); rmap_len = map->stripe_len * nr_data_stripes(map); } buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS); for (i = 0; i < map->num_stripes; i++) { if (devid && map->stripes[i].dev->devid != devid) continue; if (map->stripes[i].physical > physical || map->stripes[i].physical + length <= physical) continue; stripe_nr = (physical - map->stripes[i].physical) / map->stripe_len; if (map->type & BTRFS_BLOCK_GROUP_RAID10) { stripe_nr = (stripe_nr * map->num_stripes + i) / map->sub_stripes; } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { stripe_nr = stripe_nr * map->num_stripes + i; } /* else if RAID[56], multiply by nr_data_stripes(). * Alternatively, just use rmap_len below instead of * map->stripe_len */ bytenr = ce->start + stripe_nr * rmap_len; for (j = 0; j < nr; j++) { if (buf[j] == bytenr) break; } if (j == nr) buf[nr++] = bytenr; } *logical = buf; *naddrs = nr; *stripe_len = rmap_len; return 0; } static inline int parity_smaller(u64 a, u64 b) { return a > b; } /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ static void sort_parity_stripes(struct btrfs_multi_bio *bbio, u64 *raid_map) { struct btrfs_bio_stripe s; int i; u64 l; int again = 1; while (again) { again = 0; for (i = 0; i < bbio->num_stripes - 1; i++) { if (parity_smaller(raid_map[i], raid_map[i+1])) { s = bbio->stripes[i]; l = raid_map[i]; bbio->stripes[i] = bbio->stripes[i+1]; raid_map[i] = raid_map[i+1]; bbio->stripes[i+1] = s; raid_map[i+1] = l; again = 1; } } } } int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, u64 logical, u64 *length, struct btrfs_multi_bio **multi_ret, int mirror_num, u64 **raid_map_ret) { return __btrfs_map_block(map_tree, rw, logical, length, NULL, multi_ret, mirror_num, raid_map_ret); } int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw, u64 logical, u64 *length, u64 *type, struct btrfs_multi_bio **multi_ret, int mirror_num, u64 **raid_map_ret) { struct cache_extent *ce; struct map_lookup *map; u64 offset; u64 stripe_offset; u64 stripe_nr; u64 *raid_map = NULL; int stripes_allocated = 8; int stripes_required = 1; int stripe_index; int i; struct btrfs_multi_bio *multi = NULL; if (multi_ret && rw == READ) { stripes_allocated = 1; } again: ce = search_cache_extent(&map_tree->cache_tree, logical); if (!ce) { kfree(multi); return -ENOENT; } if (ce->start > logical || ce->start + ce->size < logical) { kfree(multi); return -ENOENT; } if (multi_ret) { multi = kzalloc(btrfs_multi_bio_size(stripes_allocated), GFP_NOFS); if (!multi) return -ENOMEM; } map = container_of(ce, struct map_lookup, ce); offset = logical - ce->start; if (rw == WRITE) { if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP)) { stripes_required = map->num_stripes; } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { stripes_required = map->sub_stripes; } } if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) && multi_ret && ((rw & WRITE) || mirror_num > 1) && raid_map_ret) { /* RAID[56] write or recovery. Return all stripes */ stripes_required = map->num_stripes; /* Only allocate the map if we've already got a large enough multi_ret */ if (stripes_allocated >= stripes_required) { raid_map = kmalloc(sizeof(u64) * map->num_stripes, GFP_NOFS); if (!raid_map) { kfree(multi); return -ENOMEM; } } } /* if our multi bio struct is too small, back off and try again */ if (multi_ret && stripes_allocated < stripes_required) { stripes_allocated = stripes_required; kfree(multi); multi = NULL; goto again; } stripe_nr = offset; /* * stripe_nr counts the total number of stripes we have to stride * to get to this block */ stripe_nr = stripe_nr / map->stripe_len; stripe_offset = stripe_nr * map->stripe_len; BUG_ON(offset < stripe_offset); /* stripe_offset is the offset of this block in its stripe*/ stripe_offset = offset - stripe_offset; if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10 | BTRFS_BLOCK_GROUP_DUP)) { /* we limit the length of each bio to what fits in a stripe */ *length = min_t(u64, ce->size - offset, map->stripe_len - stripe_offset); } else { *length = ce->size - offset; } if (!multi_ret) goto out; multi->num_stripes = 1; stripe_index = 0; if (map->type & BTRFS_BLOCK_GROUP_RAID1) { if (rw == WRITE) multi->num_stripes = map->num_stripes; else if (mirror_num) stripe_index = mirror_num - 1; else stripe_index = stripe_nr % map->num_stripes; } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { int factor = map->num_stripes / map->sub_stripes; stripe_index = stripe_nr % factor; stripe_index *= map->sub_stripes; if (rw == WRITE) multi->num_stripes = map->sub_stripes; else if (mirror_num) stripe_index += mirror_num - 1; stripe_nr = stripe_nr / factor; } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { if (rw == WRITE) multi->num_stripes = map->num_stripes; else if (mirror_num) stripe_index = mirror_num - 1; } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) { if (raid_map) { int rot; u64 tmp; u64 raid56_full_stripe_start; u64 full_stripe_len = nr_data_stripes(map) * map->stripe_len; /* * align the start of our data stripe in the logical * address space */ raid56_full_stripe_start = offset / full_stripe_len; raid56_full_stripe_start *= full_stripe_len; /* get the data stripe number */ stripe_nr = raid56_full_stripe_start / map->stripe_len; stripe_nr = stripe_nr / nr_data_stripes(map); /* Work out the disk rotation on this stripe-set */ rot = stripe_nr % map->num_stripes; /* Fill in the logical address of each stripe */ tmp = stripe_nr * nr_data_stripes(map); for (i = 0; i < nr_data_stripes(map); i++) raid_map[(i+rot) % map->num_stripes] = ce->start + (tmp + i) * map->stripe_len; raid_map[(i+rot) % map->num_stripes] = BTRFS_RAID5_P_STRIPE; if (map->type & BTRFS_BLOCK_GROUP_RAID6) raid_map[(i+rot+1) % map->num_stripes] = BTRFS_RAID6_Q_STRIPE; *length = map->stripe_len; stripe_index = 0; stripe_offset = 0; multi->num_stripes = map->num_stripes; } else { stripe_index = stripe_nr % nr_data_stripes(map); stripe_nr = stripe_nr / nr_data_stripes(map); /* * Mirror #0 or #1 means the original data block. * Mirror #2 is RAID5 parity block. * Mirror #3 is RAID6 Q block. */ if (mirror_num > 1) stripe_index = nr_data_stripes(map) + mirror_num - 2; /* We distribute the parity blocks across stripes */ stripe_index = (stripe_nr + stripe_index) % map->num_stripes; } } else { /* * after this do_div call, stripe_nr is the number of stripes * on this device we have to walk to find the data, and * stripe_index is the number of our device in the stripe array */ stripe_index = stripe_nr % map->num_stripes; stripe_nr = stripe_nr / map->num_stripes; } BUG_ON(stripe_index >= map->num_stripes); for (i = 0; i < multi->num_stripes; i++) { multi->stripes[i].physical = map->stripes[stripe_index].physical + stripe_offset + stripe_nr * map->stripe_len; multi->stripes[i].dev = map->stripes[stripe_index].dev; stripe_index++; } *multi_ret = multi; if (type) *type = map->type; if (raid_map) { sort_parity_stripes(multi, raid_map); *raid_map_ret = raid_map; } out: return 0; } struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid, u8 *uuid, u8 *fsid) { struct btrfs_device *device; struct btrfs_fs_devices *cur_devices; cur_devices = root->fs_info->fs_devices; while (cur_devices) { if (!fsid || !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { device = __find_device(&cur_devices->devices, devid, uuid); if (device) return device; } cur_devices = cur_devices->seed; } return NULL; } struct btrfs_device * btrfs_find_device_by_devid(struct btrfs_fs_devices *fs_devices, u64 devid, int instance) { struct list_head *head = &fs_devices->devices; struct btrfs_device *dev; int num_found = 0; list_for_each_entry(dev, head, dev_list) { if (dev->devid == devid && num_found++ == instance) return dev; } return NULL; } int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) { struct cache_extent *ce; struct map_lookup *map; struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; int readonly = 0; int i; /* * During chunk recovering, we may fail to find block group's * corresponding chunk, we will rebuild it later */ ce = search_cache_extent(&map_tree->cache_tree, chunk_offset); if (!root->fs_info->is_chunk_recover) BUG_ON(!ce); else return 0; map = container_of(ce, struct map_lookup, ce); for (i = 0; i < map->num_stripes; i++) { if (!map->stripes[i].dev->writeable) { readonly = 1; break; } } return readonly; } static struct btrfs_device *fill_missing_device(u64 devid) { struct btrfs_device *device; device = kzalloc(sizeof(*device), GFP_NOFS); device->devid = devid; device->fd = -1; return device; } static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, struct extent_buffer *leaf, struct btrfs_chunk *chunk) { struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; struct map_lookup *map; struct cache_extent *ce; u64 logical; u64 length; u64 devid; u8 uuid[BTRFS_UUID_SIZE]; int num_stripes; int ret; int i; logical = key->offset; length = btrfs_chunk_length(leaf, chunk); ce = search_cache_extent(&map_tree->cache_tree, logical); /* already mapped? */ if (ce && ce->start <= logical && ce->start + ce->size > logical) { return 0; } num_stripes = btrfs_chunk_num_stripes(leaf, chunk); map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS); if (!map) return -ENOMEM; map->ce.start = logical; map->ce.size = length; map->num_stripes = num_stripes; map->io_width = btrfs_chunk_io_width(leaf, chunk); map->io_align = btrfs_chunk_io_align(leaf, chunk); map->sector_size = btrfs_chunk_sector_size(leaf, chunk); map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); map->type = btrfs_chunk_type(leaf, chunk); map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); for (i = 0; i < num_stripes; i++) { map->stripes[i].physical = btrfs_stripe_offset_nr(leaf, chunk, i); devid = btrfs_stripe_devid_nr(leaf, chunk, i); read_extent_buffer(leaf, uuid, (unsigned long) btrfs_stripe_dev_uuid_nr(chunk, i), BTRFS_UUID_SIZE); map->stripes[i].dev = btrfs_find_device(root, devid, uuid, NULL); if (!map->stripes[i].dev) { map->stripes[i].dev = fill_missing_device(devid); printf("warning, device %llu is missing\n", (unsigned long long)devid); } } ret = insert_cache_extent(&map_tree->cache_tree, &map->ce); BUG_ON(ret); return 0; } static int fill_device_from_item(struct extent_buffer *leaf, struct btrfs_dev_item *dev_item, struct btrfs_device *device) { unsigned long ptr; device->devid = btrfs_device_id(leaf, dev_item); device->total_bytes = btrfs_device_total_bytes(leaf, dev_item); device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); device->type = btrfs_device_type(leaf, dev_item); device->io_align = btrfs_device_io_align(leaf, dev_item); device->io_width = btrfs_device_io_width(leaf, dev_item); device->sector_size = btrfs_device_sector_size(leaf, dev_item); ptr = (unsigned long)btrfs_device_uuid(dev_item); read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); return 0; } static int open_seed_devices(struct btrfs_root *root, u8 *fsid) { struct btrfs_fs_devices *fs_devices; int ret; fs_devices = root->fs_info->fs_devices->seed; while (fs_devices) { if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) { ret = 0; goto out; } fs_devices = fs_devices->seed; } fs_devices = find_fsid(fsid); if (!fs_devices) { ret = -ENOENT; goto out; } ret = btrfs_open_devices(fs_devices, O_RDONLY); if (ret) goto out; fs_devices->seed = root->fs_info->fs_devices->seed; root->fs_info->fs_devices->seed = fs_devices; out: return ret; } static int read_one_dev(struct btrfs_root *root, struct extent_buffer *leaf, struct btrfs_dev_item *dev_item) { struct btrfs_device *device; u64 devid; int ret = 0; u8 fs_uuid[BTRFS_UUID_SIZE]; u8 dev_uuid[BTRFS_UUID_SIZE]; devid = btrfs_device_id(leaf, dev_item); read_extent_buffer(leaf, dev_uuid, (unsigned long)btrfs_device_uuid(dev_item), BTRFS_UUID_SIZE); read_extent_buffer(leaf, fs_uuid, (unsigned long)btrfs_device_fsid(dev_item), BTRFS_UUID_SIZE); if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { ret = open_seed_devices(root, fs_uuid); if (ret) return ret; } device = btrfs_find_device(root, devid, dev_uuid, fs_uuid); if (!device) { printk("warning devid %llu not found already\n", (unsigned long long)devid); device = kzalloc(sizeof(*device), GFP_NOFS); if (!device) return -ENOMEM; device->fd = -1; list_add(&device->dev_list, &root->fs_info->fs_devices->devices); } fill_device_from_item(leaf, dev_item, device); device->dev_root = root->fs_info->dev_root; return ret; } int btrfs_read_sys_array(struct btrfs_root *root) { struct btrfs_super_block *super_copy = root->fs_info->super_copy; struct extent_buffer *sb; struct btrfs_disk_key *disk_key; struct btrfs_chunk *chunk; struct btrfs_key key; u32 num_stripes; u32 len = 0; u8 *ptr; u8 *array_end; int ret = 0; sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET, BTRFS_SUPER_INFO_SIZE); if (!sb) return -ENOMEM; btrfs_set_buffer_uptodate(sb); write_extent_buffer(sb, super_copy, 0, sizeof(*super_copy)); array_end = ((u8 *)super_copy->sys_chunk_array) + btrfs_super_sys_array_size(super_copy); /* * we do this loop twice, once for the device items and * once for all of the chunks. This way there are device * structs filled in for every chunk */ ptr = super_copy->sys_chunk_array; while (ptr < array_end) { disk_key = (struct btrfs_disk_key *)ptr; btrfs_disk_key_to_cpu(&key, disk_key); len = sizeof(*disk_key); ptr += len; if (key.type == BTRFS_CHUNK_ITEM_KEY) { chunk = (struct btrfs_chunk *)(ptr - (u8 *)super_copy); ret = read_one_chunk(root, &key, sb, chunk); if (ret) break; num_stripes = btrfs_chunk_num_stripes(sb, chunk); len = btrfs_chunk_item_size(num_stripes); } else { BUG(); } ptr += len; } free_extent_buffer(sb); return ret; } int btrfs_read_chunk_tree(struct btrfs_root *root) { struct btrfs_path *path; struct extent_buffer *leaf; struct btrfs_key key; struct btrfs_key found_key; int ret; int slot; root = root->fs_info->chunk_root; path = btrfs_alloc_path(); if (!path) return -ENOMEM; /* * Read all device items, and then all the chunk items. All * device items are found before any chunk item (their object id * is smaller than the lowest possible object id for a chunk * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). */ key.objectid = BTRFS_DEV_ITEMS_OBJECTID; key.offset = 0; key.type = 0; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) goto error; while(1) { leaf = path->nodes[0]; slot = path->slots[0]; if (slot >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(root, path); if (ret == 0) continue; if (ret < 0) goto error; break; } btrfs_item_key_to_cpu(leaf, &found_key, slot); if (found_key.type == BTRFS_DEV_ITEM_KEY) { struct btrfs_dev_item *dev_item; dev_item = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item); ret = read_one_dev(root, leaf, dev_item); BUG_ON(ret); } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { struct btrfs_chunk *chunk; chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); ret = read_one_chunk(root, &found_key, leaf, chunk); BUG_ON(ret); } path->slots[0]++; } ret = 0; error: btrfs_free_path(path); return ret; } struct list_head *btrfs_scanned_uuids(void) { return &fs_uuids; } static int rmw_eb(struct btrfs_fs_info *info, struct extent_buffer *eb, struct extent_buffer *orig_eb) { int ret; unsigned long orig_off = 0; unsigned long dest_off = 0; unsigned long copy_len = eb->len; ret = read_whole_eb(info, eb, 0); if (ret) return ret; if (eb->start + eb->len <= orig_eb->start || eb->start >= orig_eb->start + orig_eb->len) return 0; /* * | ----- orig_eb ------- | * | ----- stripe ------- | * | ----- orig_eb ------- | * | ----- orig_eb ------- | */ if (eb->start > orig_eb->start) orig_off = eb->start - orig_eb->start; if (orig_eb->start > eb->start) dest_off = orig_eb->start - eb->start; if (copy_len > orig_eb->len - orig_off) copy_len = orig_eb->len - orig_off; if (copy_len > eb->len - dest_off) copy_len = eb->len - dest_off; memcpy(eb->data + dest_off, orig_eb->data + orig_off, copy_len); return 0; } static void split_eb_for_raid56(struct btrfs_fs_info *info, struct extent_buffer *orig_eb, struct extent_buffer **ebs, u64 stripe_len, u64 *raid_map, int num_stripes) { struct extent_buffer *eb; u64 start = orig_eb->start; u64 this_eb_start; int i; int ret; for (i = 0; i < num_stripes; i++) { if (raid_map[i] >= BTRFS_RAID5_P_STRIPE) break; eb = malloc(sizeof(struct extent_buffer) + stripe_len); if (!eb) BUG(); memset(eb, 0, sizeof(struct extent_buffer) + stripe_len); eb->start = raid_map[i]; eb->len = stripe_len; eb->refs = 1; eb->flags = 0; eb->fd = -1; eb->dev_bytenr = (u64)-1; this_eb_start = raid_map[i]; if (start > this_eb_start || start + orig_eb->len < this_eb_start + stripe_len) { ret = rmw_eb(info, eb, orig_eb); BUG_ON(ret); } else { memcpy(eb->data, orig_eb->data + eb->start - start, stripe_len); } ebs[i] = eb; } } int write_raid56_with_parity(struct btrfs_fs_info *info, struct extent_buffer *eb, struct btrfs_multi_bio *multi, u64 stripe_len, u64 *raid_map) { struct extent_buffer **ebs, *p_eb = NULL, *q_eb = NULL; int i; int j; int ret; int alloc_size = eb->len; ebs = kmalloc(sizeof(*ebs) * multi->num_stripes, GFP_NOFS); BUG_ON(!ebs); if (stripe_len > alloc_size) alloc_size = stripe_len; split_eb_for_raid56(info, eb, ebs, stripe_len, raid_map, multi->num_stripes); for (i = 0; i < multi->num_stripes; i++) { struct extent_buffer *new_eb; if (raid_map[i] < BTRFS_RAID5_P_STRIPE) { ebs[i]->dev_bytenr = multi->stripes[i].physical; ebs[i]->fd = multi->stripes[i].dev->fd; multi->stripes[i].dev->total_ios++; BUG_ON(ebs[i]->start != raid_map[i]); continue; } new_eb = kmalloc(sizeof(*eb) + alloc_size, GFP_NOFS); BUG_ON(!new_eb); new_eb->dev_bytenr = multi->stripes[i].physical; new_eb->fd = multi->stripes[i].dev->fd; multi->stripes[i].dev->total_ios++; new_eb->len = stripe_len; if (raid_map[i] == BTRFS_RAID5_P_STRIPE) p_eb = new_eb; else if (raid_map[i] == BTRFS_RAID6_Q_STRIPE) q_eb = new_eb; } if (q_eb) { void **pointers; pointers = kmalloc(sizeof(*pointers) * multi->num_stripes, GFP_NOFS); BUG_ON(!pointers); ebs[multi->num_stripes - 2] = p_eb; ebs[multi->num_stripes - 1] = q_eb; for (i = 0; i < multi->num_stripes; i++) pointers[i] = ebs[i]->data; raid6_gen_syndrome(multi->num_stripes, stripe_len, pointers); kfree(pointers); } else { ebs[multi->num_stripes - 1] = p_eb; memcpy(p_eb->data, ebs[0]->data, stripe_len); for (j = 1; j < multi->num_stripes - 1; j++) { for (i = 0; i < stripe_len; i += sizeof(unsigned long)) { *(unsigned long *)(p_eb->data + i) ^= *(unsigned long *)(ebs[j]->data + i); } } } for (i = 0; i < multi->num_stripes; i++) { ret = write_extent_to_disk(ebs[i]); BUG_ON(ret); if (ebs[i] != eb) kfree(ebs[i]); } kfree(ebs); return 0; }