bluez/sbc/sbc_primitives_neon.c
Siarhei Siamashka e80454d08b sbc: slightly faster 'sbc_calc_scalefactors_neon'
Previous variant was basically derived from C and MMX implementations.
Now new variant makes use of 'vmax' instruction, which is available in
NEON and can do this job faster. The same method for calculating scale
factors is also used in 'sbc_calc_scalefactors_j_neon'.

Benchmarked without joint stereo on ARM Cortex-A8:

== Before: ==

$ time ./sbcenc -b53 -s8 test.au > /dev/null

real    0m3.851s
user    0m3.375s
sys     0m0.469s

samples  %        image name               symbol name
26260    34.2672  sbcenc                   sbc_pack_frame
20013    26.1154  sbcenc                   sbc_analyze_4b_8s_neon
13796    18.0027  sbcenc                   sbc_calculate_bits
8388     10.9457  no-vmlinux               /no-vmlinux
3229      4.2136  sbcenc                   sbc_enc_process_input_8s_be_neon
2408      3.1422  sbcenc                   sbc_calc_scalefactors_neon
2093      2.7312  sbcenc                   sbc_encode

== After: ==

$ time ./sbcenc -b53 -s8 test.au > /dev/null

real    0m3.796s
user    0m3.344s
sys     0m0.438s

samples  %        image name               symbol name
26582    34.8726  sbcenc                   sbc_pack_frame
20032    26.2797  sbcenc                   sbc_analyze_4b_8s_neon
13808    18.1146  sbcenc                   sbc_calculate_bits
8374     10.9858  no-vmlinux               /no-vmlinux
3187      4.1810  sbcenc                   sbc_enc_process_input_8s_be_neon
2027      2.6592  sbcenc                   sbc_encode
1766      2.3168  sbcenc                   sbc_calc_scalefactors_neon
2010-07-02 16:02:07 -03:00

894 lines
27 KiB
C

/*
*
* Bluetooth low-complexity, subband codec (SBC) library
*
* Copyright (C) 2008-2010 Nokia Corporation
* Copyright (C) 2004-2010 Marcel Holtmann <marcel@holtmann.org>
* Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch>
* Copyright (C) 2005-2006 Brad Midgley <bmidgley@xmission.com>
*
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <stdint.h>
#include <limits.h>
#include "sbc.h"
#include "sbc_math.h"
#include "sbc_tables.h"
#include "sbc_primitives_neon.h"
/*
* ARM NEON optimizations
*/
#ifdef SBC_BUILD_WITH_NEON_SUPPORT
static inline void _sbc_analyze_four_neon(const int16_t *in, int32_t *out,
const FIXED_T *consts)
{
/* TODO: merge even and odd cases (or even merge all four calls to this
* function) in order to have only aligned reads from 'in' array
* and reduce number of load instructions */
asm volatile (
"vld1.16 {d4, d5}, [%0, :64]!\n"
"vld1.16 {d8, d9}, [%1, :128]!\n"
"vmull.s16 q0, d4, d8\n"
"vld1.16 {d6, d7}, [%0, :64]!\n"
"vmull.s16 q1, d5, d9\n"
"vld1.16 {d10, d11}, [%1, :128]!\n"
"vmlal.s16 q0, d6, d10\n"
"vld1.16 {d4, d5}, [%0, :64]!\n"
"vmlal.s16 q1, d7, d11\n"
"vld1.16 {d8, d9}, [%1, :128]!\n"
"vmlal.s16 q0, d4, d8\n"
"vld1.16 {d6, d7}, [%0, :64]!\n"
"vmlal.s16 q1, d5, d9\n"
"vld1.16 {d10, d11}, [%1, :128]!\n"
"vmlal.s16 q0, d6, d10\n"
"vld1.16 {d4, d5}, [%0, :64]!\n"
"vmlal.s16 q1, d7, d11\n"
"vld1.16 {d8, d9}, [%1, :128]!\n"
"vmlal.s16 q0, d4, d8\n"
"vmlal.s16 q1, d5, d9\n"
"vpadd.s32 d0, d0, d1\n"
"vpadd.s32 d1, d2, d3\n"
"vrshrn.s32 d0, q0, %3\n"
"vld1.16 {d2, d3, d4, d5}, [%1, :128]!\n"
"vdup.i32 d1, d0[1]\n" /* TODO: can be eliminated */
"vdup.i32 d0, d0[0]\n" /* TODO: can be eliminated */
"vmull.s16 q3, d2, d0\n"
"vmull.s16 q4, d3, d0\n"
"vmlal.s16 q3, d4, d1\n"
"vmlal.s16 q4, d5, d1\n"
"vpadd.s32 d0, d6, d7\n" /* TODO: can be eliminated */
"vpadd.s32 d1, d8, d9\n" /* TODO: can be eliminated */
"vst1.32 {d0, d1}, [%2, :128]\n"
: "+r" (in), "+r" (consts)
: "r" (out),
"i" (SBC_PROTO_FIXED4_SCALE)
: "memory",
"d0", "d1", "d2", "d3", "d4", "d5",
"d6", "d7", "d8", "d9", "d10", "d11");
}
static inline void _sbc_analyze_eight_neon(const int16_t *in, int32_t *out,
const FIXED_T *consts)
{
/* TODO: merge even and odd cases (or even merge all four calls to this
* function) in order to have only aligned reads from 'in' array
* and reduce number of load instructions */
asm volatile (
"vld1.16 {d4, d5}, [%0, :64]!\n"
"vld1.16 {d8, d9}, [%1, :128]!\n"
"vmull.s16 q6, d4, d8\n"
"vld1.16 {d6, d7}, [%0, :64]!\n"
"vmull.s16 q7, d5, d9\n"
"vld1.16 {d10, d11}, [%1, :128]!\n"
"vmull.s16 q8, d6, d10\n"
"vld1.16 {d4, d5}, [%0, :64]!\n"
"vmull.s16 q9, d7, d11\n"
"vld1.16 {d8, d9}, [%1, :128]!\n"
"vmlal.s16 q6, d4, d8\n"
"vld1.16 {d6, d7}, [%0, :64]!\n"
"vmlal.s16 q7, d5, d9\n"
"vld1.16 {d10, d11}, [%1, :128]!\n"
"vmlal.s16 q8, d6, d10\n"
"vld1.16 {d4, d5}, [%0, :64]!\n"
"vmlal.s16 q9, d7, d11\n"
"vld1.16 {d8, d9}, [%1, :128]!\n"
"vmlal.s16 q6, d4, d8\n"
"vld1.16 {d6, d7}, [%0, :64]!\n"
"vmlal.s16 q7, d5, d9\n"
"vld1.16 {d10, d11}, [%1, :128]!\n"
"vmlal.s16 q8, d6, d10\n"
"vld1.16 {d4, d5}, [%0, :64]!\n"
"vmlal.s16 q9, d7, d11\n"
"vld1.16 {d8, d9}, [%1, :128]!\n"
"vmlal.s16 q6, d4, d8\n"
"vld1.16 {d6, d7}, [%0, :64]!\n"
"vmlal.s16 q7, d5, d9\n"
"vld1.16 {d10, d11}, [%1, :128]!\n"
"vmlal.s16 q8, d6, d10\n"
"vld1.16 {d4, d5}, [%0, :64]!\n"
"vmlal.s16 q9, d7, d11\n"
"vld1.16 {d8, d9}, [%1, :128]!\n"
"vmlal.s16 q6, d4, d8\n"
"vld1.16 {d6, d7}, [%0, :64]!\n"
"vmlal.s16 q7, d5, d9\n"
"vld1.16 {d10, d11}, [%1, :128]!\n"
"vmlal.s16 q8, d6, d10\n"
"vmlal.s16 q9, d7, d11\n"
"vpadd.s32 d0, d12, d13\n"
"vpadd.s32 d1, d14, d15\n"
"vpadd.s32 d2, d16, d17\n"
"vpadd.s32 d3, d18, d19\n"
"vrshr.s32 q0, q0, %3\n"
"vrshr.s32 q1, q1, %3\n"
"vmovn.s32 d0, q0\n"
"vmovn.s32 d1, q1\n"
"vdup.i32 d3, d1[1]\n" /* TODO: can be eliminated */
"vdup.i32 d2, d1[0]\n" /* TODO: can be eliminated */
"vdup.i32 d1, d0[1]\n" /* TODO: can be eliminated */
"vdup.i32 d0, d0[0]\n" /* TODO: can be eliminated */
"vld1.16 {d4, d5}, [%1, :128]!\n"
"vmull.s16 q6, d4, d0\n"
"vld1.16 {d6, d7}, [%1, :128]!\n"
"vmull.s16 q7, d5, d0\n"
"vmull.s16 q8, d6, d0\n"
"vmull.s16 q9, d7, d0\n"
"vld1.16 {d4, d5}, [%1, :128]!\n"
"vmlal.s16 q6, d4, d1\n"
"vld1.16 {d6, d7}, [%1, :128]!\n"
"vmlal.s16 q7, d5, d1\n"
"vmlal.s16 q8, d6, d1\n"
"vmlal.s16 q9, d7, d1\n"
"vld1.16 {d4, d5}, [%1, :128]!\n"
"vmlal.s16 q6, d4, d2\n"
"vld1.16 {d6, d7}, [%1, :128]!\n"
"vmlal.s16 q7, d5, d2\n"
"vmlal.s16 q8, d6, d2\n"
"vmlal.s16 q9, d7, d2\n"
"vld1.16 {d4, d5}, [%1, :128]!\n"
"vmlal.s16 q6, d4, d3\n"
"vld1.16 {d6, d7}, [%1, :128]!\n"
"vmlal.s16 q7, d5, d3\n"
"vmlal.s16 q8, d6, d3\n"
"vmlal.s16 q9, d7, d3\n"
"vpadd.s32 d0, d12, d13\n" /* TODO: can be eliminated */
"vpadd.s32 d1, d14, d15\n" /* TODO: can be eliminated */
"vpadd.s32 d2, d16, d17\n" /* TODO: can be eliminated */
"vpadd.s32 d3, d18, d19\n" /* TODO: can be eliminated */
"vst1.32 {d0, d1, d2, d3}, [%2, :128]\n"
: "+r" (in), "+r" (consts)
: "r" (out),
"i" (SBC_PROTO_FIXED8_SCALE)
: "memory",
"d0", "d1", "d2", "d3", "d4", "d5",
"d6", "d7", "d8", "d9", "d10", "d11",
"d12", "d13", "d14", "d15", "d16", "d17",
"d18", "d19");
}
static inline void sbc_analyze_4b_4s_neon(int16_t *x,
int32_t *out, int out_stride)
{
/* Analyze blocks */
_sbc_analyze_four_neon(x + 12, out, analysis_consts_fixed4_simd_odd);
out += out_stride;
_sbc_analyze_four_neon(x + 8, out, analysis_consts_fixed4_simd_even);
out += out_stride;
_sbc_analyze_four_neon(x + 4, out, analysis_consts_fixed4_simd_odd);
out += out_stride;
_sbc_analyze_four_neon(x + 0, out, analysis_consts_fixed4_simd_even);
}
static inline void sbc_analyze_4b_8s_neon(int16_t *x,
int32_t *out, int out_stride)
{
/* Analyze blocks */
_sbc_analyze_eight_neon(x + 24, out, analysis_consts_fixed8_simd_odd);
out += out_stride;
_sbc_analyze_eight_neon(x + 16, out, analysis_consts_fixed8_simd_even);
out += out_stride;
_sbc_analyze_eight_neon(x + 8, out, analysis_consts_fixed8_simd_odd);
out += out_stride;
_sbc_analyze_eight_neon(x + 0, out, analysis_consts_fixed8_simd_even);
}
static void sbc_calc_scalefactors_neon(
int32_t sb_sample_f[16][2][8],
uint32_t scale_factor[2][8],
int blocks, int channels, int subbands)
{
int ch, sb;
for (ch = 0; ch < channels; ch++) {
for (sb = 0; sb < subbands; sb += 4) {
int blk = blocks;
int32_t *in = &sb_sample_f[0][ch][sb];
asm volatile (
"vmov.s32 q0, #0\n"
"vmov.s32 q1, %[c1]\n"
"vmov.s32 q14, #1\n"
"vmov.s32 q15, %[c2]\n"
"vadd.s32 q1, q1, q14\n"
"1:\n"
"vld1.32 {d16, d17}, [%[in], :128], %[inc]\n"
"vabs.s32 q8, q8\n"
"vld1.32 {d18, d19}, [%[in], :128], %[inc]\n"
"vabs.s32 q9, q9\n"
"vld1.32 {d20, d21}, [%[in], :128], %[inc]\n"
"vabs.s32 q10, q10\n"
"vld1.32 {d22, d23}, [%[in], :128], %[inc]\n"
"vabs.s32 q11, q11\n"
"vmax.s32 q0, q0, q8\n"
"vmax.s32 q1, q1, q9\n"
"vmax.s32 q0, q0, q10\n"
"vmax.s32 q1, q1, q11\n"
"subs %[blk], %[blk], #4\n"
"bgt 1b\n"
"vmax.s32 q0, q0, q1\n"
"vsub.s32 q0, q0, q14\n"
"vclz.s32 q0, q0\n"
"vsub.s32 q0, q15, q0\n"
"vst1.32 {d0, d1}, [%[out], :128]\n"
:
[blk] "+r" (blk),
[in] "+r" (in)
:
[inc] "r" ((char *) &sb_sample_f[1][0][0] -
(char *) &sb_sample_f[0][0][0]),
[out] "r" (&scale_factor[ch][sb]),
[c1] "i" (1 << SCALE_OUT_BITS),
[c2] "i" (31 - SCALE_OUT_BITS)
: "d0", "d1", "d2", "d3", "d16", "d17", "d18", "d19",
"d20", "d21", "d22", "d23", "d24", "d25", "d26",
"d27", "d28", "d29", "d30", "d31", "cc", "memory");
}
}
}
int sbc_calc_scalefactors_j_neon(
int32_t sb_sample_f[16][2][8],
uint32_t scale_factor[2][8],
int blocks, int subbands)
{
static SBC_ALIGNED int32_t joint_bits_mask[8] = {
8, 4, 2, 1, 128, 64, 32, 16
};
int joint, i;
int32_t *in0, *in1;
int32_t *in = &sb_sample_f[0][0][0];
uint32_t *out0, *out1;
uint32_t *out = &scale_factor[0][0];
int32_t *consts = joint_bits_mask;
i = subbands;
asm volatile (
/*
* constants: q13 = (31 - SCALE_OUT_BITS), q14 = 1
* input: q0 = ((1 << SCALE_OUT_BITS) + 1)
* %[in0] - samples for channel 0
* %[in1] - samples for shannel 1
* output: q0, q1 - scale factors without joint stereo
* q2, q3 - scale factors with joint stereo
* q15 - joint stereo selection mask
*/
".macro calc_scalefactors\n"
"vmov.s32 q1, q0\n"
"vmov.s32 q2, q0\n"
"vmov.s32 q3, q0\n"
"mov %[i], %[blocks]\n"
"1:\n"
"vld1.32 {d18, d19}, [%[in1], :128], %[inc]\n"
"vbic.s32 q11, q9, q14\n"
"vld1.32 {d16, d17}, [%[in0], :128], %[inc]\n"
"vhadd.s32 q10, q8, q11\n"
"vhsub.s32 q11, q8, q11\n"
"vabs.s32 q8, q8\n"
"vabs.s32 q9, q9\n"
"vabs.s32 q10, q10\n"
"vabs.s32 q11, q11\n"
"vmax.s32 q0, q0, q8\n"
"vmax.s32 q1, q1, q9\n"
"vmax.s32 q2, q2, q10\n"
"vmax.s32 q3, q3, q11\n"
"subs %[i], %[i], #1\n"
"bgt 1b\n"
"vsub.s32 q0, q0, q14\n"
"vsub.s32 q1, q1, q14\n"
"vsub.s32 q2, q2, q14\n"
"vsub.s32 q3, q3, q14\n"
"vclz.s32 q0, q0\n"
"vclz.s32 q1, q1\n"
"vclz.s32 q2, q2\n"
"vclz.s32 q3, q3\n"
"vsub.s32 q0, q13, q0\n"
"vsub.s32 q1, q13, q1\n"
"vsub.s32 q2, q13, q2\n"
"vsub.s32 q3, q13, q3\n"
".endm\n"
/*
* constants: q14 = 1
* input: q15 - joint stereo selection mask
* %[in0] - value set by calc_scalefactors macro
* %[in1] - value set by calc_scalefactors macro
*/
".macro update_joint_stereo_samples\n"
"sub %[out1], %[in1], %[inc]\n"
"sub %[out0], %[in0], %[inc]\n"
"sub %[in1], %[in1], %[inc], asl #1\n"
"sub %[in0], %[in0], %[inc], asl #1\n"
"vld1.32 {d18, d19}, [%[in1], :128]\n"
"vbic.s32 q11, q9, q14\n"
"vld1.32 {d16, d17}, [%[in0], :128]\n"
"vld1.32 {d2, d3}, [%[out1], :128]\n"
"vbic.s32 q3, q1, q14\n"
"vld1.32 {d0, d1}, [%[out0], :128]\n"
"vhsub.s32 q10, q8, q11\n"
"vhadd.s32 q11, q8, q11\n"
"vhsub.s32 q2, q0, q3\n"
"vhadd.s32 q3, q0, q3\n"
"vbif.s32 q10, q9, q15\n"
"vbif.s32 d22, d16, d30\n"
"sub %[inc], %[zero], %[inc], asl #1\n"
"sub %[i], %[blocks], #2\n"
"2:\n"
"vbif.s32 d23, d17, d31\n"
"vst1.32 {d20, d21}, [%[in1], :128], %[inc]\n"
"vbif.s32 d4, d2, d30\n"
"vld1.32 {d18, d19}, [%[in1], :128]\n"
"vbif.s32 d5, d3, d31\n"
"vst1.32 {d22, d23}, [%[in0], :128], %[inc]\n"
"vbif.s32 d6, d0, d30\n"
"vld1.32 {d16, d17}, [%[in0], :128]\n"
"vbif.s32 d7, d1, d31\n"
"vst1.32 {d4, d5}, [%[out1], :128], %[inc]\n"
"vbic.s32 q11, q9, q14\n"
"vld1.32 {d2, d3}, [%[out1], :128]\n"
"vst1.32 {d6, d7}, [%[out0], :128], %[inc]\n"
"vbic.s32 q3, q1, q14\n"
"vld1.32 {d0, d1}, [%[out0], :128]\n"
"vhsub.s32 q10, q8, q11\n"
"vhadd.s32 q11, q8, q11\n"
"vhsub.s32 q2, q0, q3\n"
"vhadd.s32 q3, q0, q3\n"
"vbif.s32 q10, q9, q15\n"
"vbif.s32 d22, d16, d30\n"
"subs %[i], %[i], #2\n"
"bgt 2b\n"
"sub %[inc], %[zero], %[inc], asr #1\n"
"vbif.s32 d23, d17, d31\n"
"vst1.32 {d20, d21}, [%[in1], :128]\n"
"vbif.s32 q2, q1, q15\n"
"vst1.32 {d22, d23}, [%[in0], :128]\n"
"vbif.s32 q3, q0, q15\n"
"vst1.32 {d4, d5}, [%[out1], :128]\n"
"vst1.32 {d6, d7}, [%[out0], :128]\n"
".endm\n"
"vmov.s32 q14, #1\n"
"vmov.s32 q13, %[c2]\n"
"cmp %[i], #4\n"
"bne 8f\n"
"4:\n" /* 4 subbands */
"add %[in0], %[in], #0\n"
"add %[in1], %[in], #32\n"
"add %[out0], %[out], #0\n"
"add %[out1], %[out], #32\n"
"vmov.s32 q0, %[c1]\n"
"vadd.s32 q0, q0, q14\n"
"calc_scalefactors\n"
/* check whether to use joint stereo for subbands 0, 1, 2 */
"vadd.s32 q15, q0, q1\n"
"vadd.s32 q9, q2, q3\n"
"vmov.s32 d31[1], %[zero]\n" /* last subband -> no joint */
"vld1.32 {d16, d17}, [%[consts], :128]!\n"
"vcgt.s32 q15, q15, q9\n"
/* calculate and save to memory 'joint' variable */
/* update and save scale factors to memory */
" vand.s32 q8, q8, q15\n"
"vbit.s32 q0, q2, q15\n"
" vpadd.s32 d16, d16, d17\n"
"vbit.s32 q1, q3, q15\n"
" vpadd.s32 d16, d16, d16\n"
"vst1.32 {d0, d1}, [%[out0], :128]\n"
"vst1.32 {d2, d3}, [%[out1], :128]\n"
" vst1.32 {d16[0]}, [%[joint]]\n"
"update_joint_stereo_samples\n"
"b 9f\n"
"8:\n" /* 8 subbands */
"add %[in0], %[in], #16\n\n"
"add %[in1], %[in], #48\n"
"add %[out0], %[out], #16\n\n"
"add %[out1], %[out], #48\n"
"vmov.s32 q0, %[c1]\n"
"vadd.s32 q0, q0, q14\n"
"calc_scalefactors\n"
/* check whether to use joint stereo for subbands 4, 5, 6 */
"vadd.s32 q15, q0, q1\n"
"vadd.s32 q9, q2, q3\n"
"vmov.s32 d31[1], %[zero]\n" /* last subband -> no joint */
"vld1.32 {d16, d17}, [%[consts], :128]!\n"
"vcgt.s32 q15, q15, q9\n"
/* calculate part of 'joint' variable and save it to d24 */
/* update and save scale factors to memory */
" vand.s32 q8, q8, q15\n"
"vbit.s32 q0, q2, q15\n"
" vpadd.s32 d16, d16, d17\n"
"vbit.s32 q1, q3, q15\n"
"vst1.32 {d0, d1}, [%[out0], :128]\n"
"vst1.32 {d2, d3}, [%[out1], :128]\n"
" vpadd.s32 d24, d16, d16\n"
"update_joint_stereo_samples\n"
"add %[in0], %[in], #0\n"
"add %[in1], %[in], #32\n"
"add %[out0], %[out], #0\n\n"
"add %[out1], %[out], #32\n"
"vmov.s32 q0, %[c1]\n"
"vadd.s32 q0, q0, q14\n"
"calc_scalefactors\n"
/* check whether to use joint stereo for subbands 0, 1, 2, 3 */
"vadd.s32 q15, q0, q1\n"
"vadd.s32 q9, q2, q3\n"
"vld1.32 {d16, d17}, [%[consts], :128]!\n"
"vcgt.s32 q15, q15, q9\n"
/* combine last part of 'joint' with d24 and save to memory */
/* update and save scale factors to memory */
" vand.s32 q8, q8, q15\n"
"vbit.s32 q0, q2, q15\n"
" vpadd.s32 d16, d16, d17\n"
"vbit.s32 q1, q3, q15\n"
" vpadd.s32 d16, d16, d16\n"
"vst1.32 {d0, d1}, [%[out0], :128]\n"
" vadd.s32 d16, d16, d24\n"
"vst1.32 {d2, d3}, [%[out1], :128]\n"
" vst1.32 {d16[0]}, [%[joint]]\n"
"update_joint_stereo_samples\n"
"9:\n"
".purgem calc_scalefactors\n"
".purgem update_joint_stereo_samples\n"
:
[i] "+&r" (i),
[in] "+&r" (in),
[in0] "=&r" (in0),
[in1] "=&r" (in1),
[out] "+&r" (out),
[out0] "=&r" (out0),
[out1] "=&r" (out1),
[consts] "+&r" (consts)
:
[inc] "r" ((char *) &sb_sample_f[1][0][0] -
(char *) &sb_sample_f[0][0][0]),
[blocks] "r" (blocks),
[joint] "r" (&joint),
[c1] "i" (1 << SCALE_OUT_BITS),
[c2] "i" (31 - SCALE_OUT_BITS),
[zero] "r" (0)
: "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
"d16", "d17", "d18", "d19", "d20", "d21", "d22",
"d23", "d24", "d25", "d26", "d27", "d28", "d29",
"d30", "d31", "cc", "memory");
return joint;
}
#define PERM_BE(a, b, c, d) { \
(a * 2) + 1, (a * 2) + 0, \
(b * 2) + 1, (b * 2) + 0, \
(c * 2) + 1, (c * 2) + 0, \
(d * 2) + 1, (d * 2) + 0 \
}
#define PERM_LE(a, b, c, d) { \
(a * 2) + 0, (a * 2) + 1, \
(b * 2) + 0, (b * 2) + 1, \
(c * 2) + 0, (c * 2) + 1, \
(d * 2) + 0, (d * 2) + 1 \
}
static SBC_ALWAYS_INLINE int sbc_enc_process_input_4s_neon_internal(
int position,
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
int nsamples, int nchannels, int big_endian)
{
static SBC_ALIGNED uint8_t perm_be[2][8] = {
PERM_BE(7, 3, 6, 4),
PERM_BE(0, 2, 1, 5)
};
static SBC_ALIGNED uint8_t perm_le[2][8] = {
PERM_LE(7, 3, 6, 4),
PERM_LE(0, 2, 1, 5)
};
/* handle X buffer wraparound */
if (position < nsamples) {
int16_t *dst = &X[0][SBC_X_BUFFER_SIZE - 40];
int16_t *src = &X[0][position];
asm volatile (
"vld1.16 {d0, d1, d2, d3}, [%[src], :128]!\n"
"vst1.16 {d0, d1, d2, d3}, [%[dst], :128]!\n"
"vld1.16 {d0, d1, d2, d3}, [%[src], :128]!\n"
"vst1.16 {d0, d1, d2, d3}, [%[dst], :128]!\n"
"vld1.16 {d0}, [%[src], :64]!\n"
"vst1.16 {d0}, [%[dst], :64]!\n"
:
[dst] "+r" (dst),
[src] "+r" (src)
: : "memory", "d0", "d1", "d2", "d3");
if (nchannels > 1) {
dst = &X[1][SBC_X_BUFFER_SIZE - 40];
src = &X[1][position];
asm volatile (
"vld1.16 {d0, d1, d2, d3}, [%[src], :128]!\n"
"vst1.16 {d0, d1, d2, d3}, [%[dst], :128]!\n"
"vld1.16 {d0, d1, d2, d3}, [%[src], :128]!\n"
"vst1.16 {d0, d1, d2, d3}, [%[dst], :128]!\n"
"vld1.16 {d0}, [%[src], :64]!\n"
"vst1.16 {d0}, [%[dst], :64]!\n"
:
[dst] "+r" (dst),
[src] "+r" (src)
: : "memory", "d0", "d1", "d2", "d3");
}
position = SBC_X_BUFFER_SIZE - 40;
}
if ((nchannels > 1) && ((uintptr_t)pcm & 1)) {
/* poor 'pcm' alignment */
int16_t *x = &X[0][position];
int16_t *y = &X[1][position];
asm volatile (
"vld1.8 {d0, d1}, [%[perm], :128]\n"
"1:\n"
"sub %[x], %[x], #16\n"
"sub %[y], %[y], #16\n"
"sub %[position], %[position], #8\n"
"vld1.8 {d4, d5}, [%[pcm]]!\n"
"vuzp.16 d4, d5\n"
"vld1.8 {d20, d21}, [%[pcm]]!\n"
"vuzp.16 d20, d21\n"
"vswp d5, d20\n"
"vtbl.8 d16, {d4, d5}, d0\n"
"vtbl.8 d17, {d4, d5}, d1\n"
"vtbl.8 d18, {d20, d21}, d0\n"
"vtbl.8 d19, {d20, d21}, d1\n"
"vst1.16 {d16, d17}, [%[x], :128]\n"
"vst1.16 {d18, d19}, [%[y], :128]\n"
"subs %[nsamples], %[nsamples], #8\n"
"bgt 1b\n"
:
[x] "+r" (x),
[y] "+r" (y),
[pcm] "+r" (pcm),
[nsamples] "+r" (nsamples),
[position] "+r" (position)
:
[perm] "r" (big_endian ? perm_be : perm_le)
: "cc", "memory", "d0", "d1", "d2", "d3", "d4",
"d5", "d6", "d7", "d16", "d17", "d18", "d19",
"d20", "d21", "d22", "d23");
} else if (nchannels > 1) {
/* proper 'pcm' alignment */
int16_t *x = &X[0][position];
int16_t *y = &X[1][position];
asm volatile (
"vld1.8 {d0, d1}, [%[perm], :128]\n"
"1:\n"
"sub %[x], %[x], #16\n"
"sub %[y], %[y], #16\n"
"sub %[position], %[position], #8\n"
"vld2.16 {d4, d5}, [%[pcm]]!\n"
"vld2.16 {d20, d21}, [%[pcm]]!\n"
"vswp d5, d20\n"
"vtbl.8 d16, {d4, d5}, d0\n"
"vtbl.8 d17, {d4, d5}, d1\n"
"vtbl.8 d18, {d20, d21}, d0\n"
"vtbl.8 d19, {d20, d21}, d1\n"
"vst1.16 {d16, d17}, [%[x], :128]\n"
"vst1.16 {d18, d19}, [%[y], :128]\n"
"subs %[nsamples], %[nsamples], #8\n"
"bgt 1b\n"
:
[x] "+r" (x),
[y] "+r" (y),
[pcm] "+r" (pcm),
[nsamples] "+r" (nsamples),
[position] "+r" (position)
:
[perm] "r" (big_endian ? perm_be : perm_le)
: "cc", "memory", "d0", "d1", "d2", "d3", "d4",
"d5", "d6", "d7", "d16", "d17", "d18", "d19",
"d20", "d21", "d22", "d23");
} else {
int16_t *x = &X[0][position];
asm volatile (
"vld1.8 {d0, d1}, [%[perm], :128]\n"
"1:\n"
"sub %[x], %[x], #16\n"
"sub %[position], %[position], #8\n"
"vld1.8 {d4, d5}, [%[pcm]]!\n"
"vtbl.8 d16, {d4, d5}, d0\n"
"vtbl.8 d17, {d4, d5}, d1\n"
"vst1.16 {d16, d17}, [%[x], :128]\n"
"subs %[nsamples], %[nsamples], #8\n"
"bgt 1b\n"
:
[x] "+r" (x),
[pcm] "+r" (pcm),
[nsamples] "+r" (nsamples),
[position] "+r" (position)
:
[perm] "r" (big_endian ? perm_be : perm_le)
: "cc", "memory", "d0", "d1", "d2", "d3", "d4",
"d5", "d6", "d7", "d16", "d17", "d18", "d19");
}
return position;
}
static SBC_ALWAYS_INLINE int sbc_enc_process_input_8s_neon_internal(
int position,
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
int nsamples, int nchannels, int big_endian)
{
static SBC_ALIGNED uint8_t perm_be[4][8] = {
PERM_BE(15, 7, 14, 8),
PERM_BE(13, 9, 12, 10),
PERM_BE(11, 3, 6, 0),
PERM_BE(5, 1, 4, 2)
};
static SBC_ALIGNED uint8_t perm_le[4][8] = {
PERM_LE(15, 7, 14, 8),
PERM_LE(13, 9, 12, 10),
PERM_LE(11, 3, 6, 0),
PERM_LE(5, 1, 4, 2)
};
/* handle X buffer wraparound */
if (position < nsamples) {
int16_t *dst = &X[0][SBC_X_BUFFER_SIZE - 72];
int16_t *src = &X[0][position];
asm volatile (
"vld1.16 {d0, d1, d2, d3}, [%[src], :128]!\n"
"vst1.16 {d0, d1, d2, d3}, [%[dst], :128]!\n"
"vld1.16 {d0, d1, d2, d3}, [%[src], :128]!\n"
"vst1.16 {d0, d1, d2, d3}, [%[dst], :128]!\n"
"vld1.16 {d0, d1, d2, d3}, [%[src], :128]!\n"
"vst1.16 {d0, d1, d2, d3}, [%[dst], :128]!\n"
"vld1.16 {d0, d1, d2, d3}, [%[src], :128]!\n"
"vst1.16 {d0, d1, d2, d3}, [%[dst], :128]!\n"
"vld1.16 {d0, d1}, [%[src], :128]!\n"
"vst1.16 {d0, d1}, [%[dst], :128]!\n"
:
[dst] "+r" (dst),
[src] "+r" (src)
: : "memory", "d0", "d1", "d2", "d3");
if (nchannels > 1) {
dst = &X[1][SBC_X_BUFFER_SIZE - 72];
src = &X[1][position];
asm volatile (
"vld1.16 {d0, d1, d2, d3}, [%[src], :128]!\n"
"vst1.16 {d0, d1, d2, d3}, [%[dst], :128]!\n"
"vld1.16 {d0, d1, d2, d3}, [%[src], :128]!\n"
"vst1.16 {d0, d1, d2, d3}, [%[dst], :128]!\n"
"vld1.16 {d0, d1, d2, d3}, [%[src], :128]!\n"
"vst1.16 {d0, d1, d2, d3}, [%[dst], :128]!\n"
"vld1.16 {d0, d1, d2, d3}, [%[src], :128]!\n"
"vst1.16 {d0, d1, d2, d3}, [%[dst], :128]!\n"
"vld1.16 {d0, d1}, [%[src], :128]!\n"
"vst1.16 {d0, d1}, [%[dst], :128]!\n"
:
[dst] "+r" (dst),
[src] "+r" (src)
: : "memory", "d0", "d1", "d2", "d3");
}
position = SBC_X_BUFFER_SIZE - 72;
}
if ((nchannels > 1) && ((uintptr_t)pcm & 1)) {
/* poor 'pcm' alignment */
int16_t *x = &X[0][position];
int16_t *y = &X[1][position];
asm volatile (
"vld1.8 {d0, d1, d2, d3}, [%[perm], :128]\n"
"1:\n"
"sub %[x], %[x], #32\n"
"sub %[y], %[y], #32\n"
"sub %[position], %[position], #16\n"
"vld1.8 {d4, d5, d6, d7}, [%[pcm]]!\n"
"vuzp.16 q2, q3\n"
"vld1.8 {d20, d21, d22, d23}, [%[pcm]]!\n"
"vuzp.16 q10, q11\n"
"vswp q3, q10\n"
"vtbl.8 d16, {d4, d5, d6, d7}, d0\n"
"vtbl.8 d17, {d4, d5, d6, d7}, d1\n"
"vtbl.8 d18, {d4, d5, d6, d7}, d2\n"
"vtbl.8 d19, {d4, d5, d6, d7}, d3\n"
"vst1.16 {d16, d17, d18, d19}, [%[x], :128]\n"
"vtbl.8 d16, {d20, d21, d22, d23}, d0\n"
"vtbl.8 d17, {d20, d21, d22, d23}, d1\n"
"vtbl.8 d18, {d20, d21, d22, d23}, d2\n"
"vtbl.8 d19, {d20, d21, d22, d23}, d3\n"
"vst1.16 {d16, d17, d18, d19}, [%[y], :128]\n"
"subs %[nsamples], %[nsamples], #16\n"
"bgt 1b\n"
:
[x] "+r" (x),
[y] "+r" (y),
[pcm] "+r" (pcm),
[nsamples] "+r" (nsamples),
[position] "+r" (position)
:
[perm] "r" (big_endian ? perm_be : perm_le)
: "cc", "memory", "d0", "d1", "d2", "d3", "d4",
"d5", "d6", "d7", "d16", "d17", "d18", "d19",
"d20", "d21", "d22", "d23");
} else if (nchannels > 1) {
/* proper 'pcm' alignment */
int16_t *x = &X[0][position];
int16_t *y = &X[1][position];
asm volatile (
"vld1.8 {d0, d1, d2, d3}, [%[perm], :128]\n"
"1:\n"
"sub %[x], %[x], #32\n"
"sub %[y], %[y], #32\n"
"sub %[position], %[position], #16\n"
"vld2.16 {d4, d5, d6, d7}, [%[pcm]]!\n"
"vld2.16 {d20, d21, d22, d23}, [%[pcm]]!\n"
"vswp q3, q10\n"
"vtbl.8 d16, {d4, d5, d6, d7}, d0\n"
"vtbl.8 d17, {d4, d5, d6, d7}, d1\n"
"vtbl.8 d18, {d4, d5, d6, d7}, d2\n"
"vtbl.8 d19, {d4, d5, d6, d7}, d3\n"
"vst1.16 {d16, d17, d18, d19}, [%[x], :128]\n"
"vtbl.8 d16, {d20, d21, d22, d23}, d0\n"
"vtbl.8 d17, {d20, d21, d22, d23}, d1\n"
"vtbl.8 d18, {d20, d21, d22, d23}, d2\n"
"vtbl.8 d19, {d20, d21, d22, d23}, d3\n"
"vst1.16 {d16, d17, d18, d19}, [%[y], :128]\n"
"subs %[nsamples], %[nsamples], #16\n"
"bgt 1b\n"
:
[x] "+r" (x),
[y] "+r" (y),
[pcm] "+r" (pcm),
[nsamples] "+r" (nsamples),
[position] "+r" (position)
:
[perm] "r" (big_endian ? perm_be : perm_le)
: "cc", "memory", "d0", "d1", "d2", "d3", "d4",
"d5", "d6", "d7", "d16", "d17", "d18", "d19",
"d20", "d21", "d22", "d23");
} else {
int16_t *x = &X[0][position];
asm volatile (
"vld1.8 {d0, d1, d2, d3}, [%[perm], :128]\n"
"1:\n"
"sub %[x], %[x], #32\n"
"sub %[position], %[position], #16\n"
"vld1.8 {d4, d5, d6, d7}, [%[pcm]]!\n"
"vtbl.8 d16, {d4, d5, d6, d7}, d0\n"
"vtbl.8 d17, {d4, d5, d6, d7}, d1\n"
"vtbl.8 d18, {d4, d5, d6, d7}, d2\n"
"vtbl.8 d19, {d4, d5, d6, d7}, d3\n"
"vst1.16 {d16, d17, d18, d19}, [%[x], :128]\n"
"subs %[nsamples], %[nsamples], #16\n"
"bgt 1b\n"
:
[x] "+r" (x),
[pcm] "+r" (pcm),
[nsamples] "+r" (nsamples),
[position] "+r" (position)
:
[perm] "r" (big_endian ? perm_be : perm_le)
: "cc", "memory", "d0", "d1", "d2", "d3", "d4",
"d5", "d6", "d7", "d16", "d17", "d18", "d19");
}
return position;
}
#undef PERM_BE
#undef PERM_LE
static int sbc_enc_process_input_4s_be_neon(int position, const uint8_t *pcm,
int16_t X[2][SBC_X_BUFFER_SIZE],
int nsamples, int nchannels)
{
return sbc_enc_process_input_4s_neon_internal(
position, pcm, X, nsamples, nchannels, 1);
}
static int sbc_enc_process_input_4s_le_neon(int position, const uint8_t *pcm,
int16_t X[2][SBC_X_BUFFER_SIZE],
int nsamples, int nchannels)
{
return sbc_enc_process_input_4s_neon_internal(
position, pcm, X, nsamples, nchannels, 0);
}
static int sbc_enc_process_input_8s_be_neon(int position, const uint8_t *pcm,
int16_t X[2][SBC_X_BUFFER_SIZE],
int nsamples, int nchannels)
{
return sbc_enc_process_input_8s_neon_internal(
position, pcm, X, nsamples, nchannels, 1);
}
static int sbc_enc_process_input_8s_le_neon(int position, const uint8_t *pcm,
int16_t X[2][SBC_X_BUFFER_SIZE],
int nsamples, int nchannels)
{
return sbc_enc_process_input_8s_neon_internal(
position, pcm, X, nsamples, nchannels, 0);
}
void sbc_init_primitives_neon(struct sbc_encoder_state *state)
{
state->sbc_analyze_4b_4s = sbc_analyze_4b_4s_neon;
state->sbc_analyze_4b_8s = sbc_analyze_4b_8s_neon;
state->sbc_calc_scalefactors = sbc_calc_scalefactors_neon;
state->sbc_calc_scalefactors_j = sbc_calc_scalefactors_j_neon;
state->sbc_enc_process_input_4s_le = sbc_enc_process_input_4s_le_neon;
state->sbc_enc_process_input_4s_be = sbc_enc_process_input_4s_be_neon;
state->sbc_enc_process_input_8s_le = sbc_enc_process_input_8s_le_neon;
state->sbc_enc_process_input_8s_be = sbc_enc_process_input_8s_be_neon;
state->implementation_info = "NEON";
}
#endif