bluez/monitor/intel.c
Luiz Augusto von Dentz 1cf5ceeef3 monitor: Cache connection information
This caches connection information including the device addres so it can
be printed alongside the handle:

> HCI Event: Disconnect Complete (0x05) plen 4
        Status: Success (0x00)
        Handle: 3585 Address: 68:79:12:XX:XX:XX (OUI 68-79-12)
        Reason: Connection Terminated By Local Host (0x16)
2022-05-18 15:35:49 -07:00

1720 lines
39 KiB
C

// SPDX-License-Identifier: LGPL-2.1-or-later
/*
*
* BlueZ - Bluetooth protocol stack for Linux
*
* Copyright (C) 2011-2014 Intel Corporation
* Copyright (C) 2002-2010 Marcel Holtmann <marcel@holtmann.org>
*
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#define _GNU_SOURCE
#include <stdio.h>
#include <inttypes.h>
#include "lib/bluetooth.h"
#include "lib/hci.h"
#include "src/shared/util.h"
#include "display.h"
#include "packet.h"
#include "lmp.h"
#include "ll.h"
#include "vendor.h"
#include "intel.h"
#define COLOR_UNKNOWN_EVENT_MASK COLOR_WHITE_BG
#define COLOR_UNKNOWN_SCAN_STATUS COLOR_WHITE_BG
#define COLOR_UNKNOWN_EXT_EVENT COLOR_WHITE_BG
static void print_status(uint8_t status)
{
packet_print_error("Status", status);
}
static void print_module(uint8_t module)
{
const char *str;
switch (module) {
case 0x01:
str = "BC";
break;
case 0x02:
str = "HCI";
break;
case 0x03:
str = "LLC";
break;
case 0x04:
str = "OS";
break;
case 0x05:
str = "LM";
break;
case 0x06:
str = "SC";
break;
case 0x07:
str = "SP";
break;
case 0x08:
str = "OSAL";
break;
case 0x09:
str = "LC";
break;
case 0x0a:
str = "APP";
break;
case 0x0b:
str = "TLD";
break;
case 0xf0:
str = "Debug";
break;
default:
str = "Reserved";
break;
}
print_field("Module: %s (0x%2.2x)", str, module);
}
static void null_cmd(uint16_t index, const void *data, uint8_t size)
{
}
static void status_rsp(uint16_t index, const void *data, uint8_t size)
{
uint8_t status = get_u8(data);
print_status(status);
}
static void reset_cmd(uint16_t index, const void *data, uint8_t size)
{
uint8_t reset_type = get_u8(data);
uint8_t patch_enable = get_u8(data + 1);
uint8_t ddc_reload = get_u8(data + 2);
uint8_t boot_option = get_u8(data + 3);
uint32_t boot_addr = get_le32(data + 4);
const char *str;
switch (reset_type) {
case 0x00:
str = "Soft software reset";
break;
case 0x01:
str = "Hard software reset";
break;
default:
str = "Reserved";
break;
}
print_field("Reset type: %s (0x%2.2x)", str, reset_type);
switch (patch_enable) {
case 0x00:
str = "Do not enable";
break;
case 0x01:
str = "Enable";
break;
default:
str = "Reserved";
break;
}
print_field("Patch vectors: %s (0x%2.2x)", str, patch_enable);
switch (ddc_reload) {
case 0x00:
str = "Do not reload";
break;
case 0x01:
str = "Reload from OTP";
break;
default:
str = "Reserved";
break;
}
print_field("DDC parameters: %s (0x%2.2x)", str, ddc_reload);
switch (boot_option) {
case 0x00:
str = "Current image";
break;
case 0x01:
str = "Specified address";
break;
default:
str = "Reserved";
break;
}
print_field("Boot option: %s (0x%2.2x)", str, boot_option);
print_field("Boot address: 0x%8.8x", boot_addr);
}
struct intel_version_tlv {
uint8_t type;
uint8_t len;
uint8_t val[];
};
static void print_version_tlv_u32(const struct intel_version_tlv *tlv,
char *type_str)
{
print_field("%s(%u): 0x%8.8x", type_str, tlv->type, get_le32(tlv->val));
}
static void print_version_tlv_u16(const struct intel_version_tlv *tlv,
char *type_str)
{
print_field("%s(%u): 0x%4.4x", type_str, tlv->type, get_le16(tlv->val));
}
static void print_version_tlv_u8(const struct intel_version_tlv *tlv,
char *type_str)
{
print_field("%s(%u): 0x%2.2x", type_str, tlv->type, get_u8(tlv->val));
}
static void print_version_tlv_enabled(const struct intel_version_tlv *tlv,
char *type_str)
{
print_field("%s(%u): %s(%u)", type_str, tlv->type,
tlv->val[0] ? "Enabled" : "Disabled",
tlv->val[0]);
}
static void print_version_tlv_img_type(const struct intel_version_tlv *tlv,
char *type_str)
{
const char *str;
switch (get_u8(tlv->val)) {
case 0x01:
str = "Bootloader";
break;
case 0x03:
str = "Firmware";
break;
default:
str = "Unknown";
break;
}
print_field("%s(%u): %s(0x%2.2x)", type_str, tlv->type, str,
get_u8(tlv->val));
}
static void print_version_tlv_timestamp(const struct intel_version_tlv *tlv,
char *type_str)
{
print_field("%s(%u): %u-%u", type_str, tlv->type,
tlv->val[1], tlv->val[0]);
}
static void print_version_tlv_min_fw(const struct intel_version_tlv *tlv,
char *type_str)
{
print_field("%s(%u): %u-%u.%u", type_str, tlv->type,
tlv->val[0], tlv->val[1], 2000 + tlv->val[2]);
}
static void print_version_tlv_otp_bdaddr(const struct intel_version_tlv *tlv,
char *type_str)
{
packet_print_addr(type_str, tlv->val, 0x00);
}
static void print_version_tlv_unknown(const struct intel_version_tlv *tlv,
char *type_str)
{
print_field("%s(%u): ", type_str, tlv->type);
packet_hexdump(tlv->val, tlv->len);
}
static void print_version_tlv_mfg(const struct intel_version_tlv *tlv,
char *type_str)
{
uint16_t mfg_id = get_le16(tlv->val);
print_field("%s(%u): %s (%u)", type_str, tlv->type,
bt_compidtostr(mfg_id), mfg_id);
}
static const struct intel_version_tlv_desc {
uint8_t type;
char *type_str;
void (*func)(const struct intel_version_tlv *tlv, char *type_str);
} intel_version_tlv_table[] = {
{ 16, "CNVi TOP", print_version_tlv_u32 },
{ 17, "CNVr TOP", print_version_tlv_u32 },
{ 18, "CNVi BT", print_version_tlv_u32 },
{ 19, "CNVr BT", print_version_tlv_u32 },
{ 20, "CNVi OTP", print_version_tlv_u16 },
{ 21, "CNVr OTP", print_version_tlv_u16 },
{ 22, "Device Rev ID", print_version_tlv_u16 },
{ 23, "USB VID", print_version_tlv_u16 },
{ 24, "USB PID", print_version_tlv_u16 },
{ 25, "PCIE VID", print_version_tlv_u16 },
{ 26, "PCIe DID", print_version_tlv_u16 },
{ 27, "PCIe Subsystem ID", print_version_tlv_u16 },
{ 28, "Image Type", print_version_tlv_img_type },
{ 29, "Time Stamp", print_version_tlv_timestamp },
{ 30, "Build Type", print_version_tlv_u8 },
{ 31, "Build Num", print_version_tlv_u32 },
{ 32, "FW Build Product", print_version_tlv_u8 },
{ 33, "FW Build HW", print_version_tlv_u8 },
{ 34, "FW Build Step", print_version_tlv_u8 },
{ 35, "BT Spec", print_version_tlv_u8 },
{ 36, "Manufacturer", print_version_tlv_mfg },
{ 37, "HCI Revision", print_version_tlv_u16 },
{ 38, "LMP SubVersion", print_version_tlv_u16 },
{ 39, "OTP Patch Version", print_version_tlv_u8 },
{ 40, "Secure Boot", print_version_tlv_enabled },
{ 41, "Key From Header", print_version_tlv_enabled },
{ 42, "OTP Lock", print_version_tlv_enabled },
{ 43, "API Lock", print_version_tlv_enabled },
{ 44, "Debug Lock", print_version_tlv_enabled },
{ 45, "Minimum FW", print_version_tlv_min_fw },
{ 46, "Limited CCE", print_version_tlv_enabled },
{ 47, "SBE Type", print_version_tlv_u8 },
{ 48, "OTP BDADDR", print_version_tlv_otp_bdaddr },
{ 49, "Unlocked State", print_version_tlv_enabled },
{ 0, NULL, NULL },
};
static void read_version_tlv_rsp(const void *data, uint8_t size)
{
uint8_t status = get_u8(data);
print_status(status);
/* Consume the status */
data++;
size--;
while (size > 0) {
const struct intel_version_tlv *tlv = data;
const struct intel_version_tlv_desc *desc = NULL;
int i;
for (i = 0; intel_version_tlv_table[i].type > 0; i++) {
if (intel_version_tlv_table[i].type == tlv->type) {
desc = &intel_version_tlv_table[i];
break;
}
}
if (desc)
desc->func(tlv, desc->type_str);
else
print_version_tlv_unknown(tlv, "Unknown Type");
data += sizeof(*tlv) + tlv->len;
size -= sizeof(*tlv) + tlv->len;
}
}
static void read_version_rsp(uint16_t index, const void *data, uint8_t size)
{
uint8_t status = get_u8(data);
uint8_t hw_platform = get_u8(data + 1);
uint8_t hw_variant = get_u8(data + 2);
uint8_t hw_revision = get_u8(data + 3);
uint8_t fw_variant = get_u8(data + 4);
uint8_t fw_revision = get_u8(data + 5);
uint8_t fw_build_nn = get_u8(data + 6);
uint8_t fw_build_cw = get_u8(data + 7);
uint8_t fw_build_yy = get_u8(data + 8);
uint8_t fw_patch = get_u8(data + 9);
/* There are two different formats of the response for the
* HCI_Intel_Read_version command depends on the command parameters
* If the size is fixed to 10 and hw_platform is 0x37, then it is the
* legacy format, otherwise use the tlv based format.
*/
if (size != 10 && hw_platform != 0x37) {
read_version_tlv_rsp(data, size);
return;
}
print_status(status);
print_field("Hardware platform: 0x%2.2x", hw_platform);
print_field("Hardware variant: 0x%2.2x", hw_variant);
print_field("Hardware revision: %u.%u", hw_revision >> 4,
hw_revision & 0x0f);
print_field("Firmware variant: 0x%2.2x", fw_variant);
print_field("Firmware revision: %u.%u", fw_revision >> 4,
fw_revision & 0x0f);
print_field("Firmware build: %u-%u.%u", fw_build_nn,
fw_build_cw, 2000 + fw_build_yy);
print_field("Firmware patch: %u", fw_patch);
}
static void read_version_cmd(uint16_t index, const void *data, uint8_t size)
{
char *str;
uint8_t type;
/* This is the legacy read version command format and no further action
* is needed
*/
if (size == 0)
return;
print_field("Requested Type:");
while (size > 0) {
const struct intel_version_tlv_desc *desc = NULL;
int i;
type = get_u8(data);
/* Get all supported types */
if (type == 0xff)
str = "All Supported Types";
else {
for (i = 0; intel_version_tlv_table[i].type > 0; i++) {
if (intel_version_tlv_table[i].type == type) {
desc = &intel_version_tlv_table[i];
break;
}
}
if (desc)
str = desc->type_str;
else
str = "Unknown Type";
}
print_field(" %s(0x%2.2x)", str, type);
data += sizeof(type);
size -= sizeof(type);
}
}
static void set_uart_baudrate_cmd(uint16_t index, const void *data,
uint8_t size)
{
uint8_t baudrate = get_u8(data);
const char *str;
switch (baudrate) {
case 0x00:
str = "9600 Baud";
break;
case 0x01:
str = "19200 Baud";
break;
case 0x02:
str = "38400 Baud";
break;
case 0x03:
str = "57600 Baud";
break;
case 0x04:
str = "115200 Baud";
break;
case 0x05:
str = "230400 Baud";
break;
case 0x06:
str = "460800 Baud";
break;
case 0x07:
str = "921600 Baud";
break;
case 0x08:
str = "1843200 Baud";
break;
case 0x09:
str = "3250000 baud";
break;
case 0x0a:
str = "2000000 baud";
break;
case 0x0b:
str = "3000000 baud";
break;
case 0x0c:
str = "3714286 baud";
break;
case 0x0d:
str = "4333333 baud";
break;
case 0x0e:
str = "6500000 baud";
break;
default:
str = "Reserved";
break;
}
print_field("Baudrate: %s (0x%2.2x)", str, baudrate);
}
static void secure_send_cmd(uint16_t index, const void *data, uint8_t size)
{
uint8_t type = get_u8(data);
const char *str;
switch (type) {
case 0x00:
str = "Init";
break;
case 0x01:
str = "Data";
break;
case 0x02:
str = "Sign";
break;
case 0x03:
str = "PKey";
break;
default:
str = "Reserved";
break;
}
print_field("Type: %s fragment (0x%2.2x)", str, type);
packet_hexdump(data + 1, size - 1);
}
static void manufacturer_mode_cmd(uint16_t index, const void *data,
uint8_t size)
{
uint8_t mode = get_u8(data);
uint8_t reset = get_u8(data + 1);
const char *str;
switch (mode) {
case 0x00:
str = "Disabled";
break;
case 0x01:
str = "Enabled";
break;
default:
str = "Reserved";
break;
}
print_field("Mode switch: %s (0x%2.2x)", str, mode);
switch (reset) {
case 0x00:
str = "No reset";
break;
case 0x01:
str = "Reset and deactivate patches";
break;
case 0x02:
str = "Reset and activate patches";
break;
default:
str = "Reserved";
break;
}
print_field("Reset behavior: %s (0x%2.2x)", str, reset);
}
static void write_bd_data_cmd(uint16_t index, const void *data, uint8_t size)
{
uint8_t features[8];
packet_print_addr("Address", data, 0x00);
packet_hexdump(data + 6, 6);
memcpy(features, data + 12, 8);
packet_print_features_lmp(features, 0);
memcpy(features, data + 20, 1);
memset(features + 1, 0, 7);
packet_print_features_ll(features);
packet_hexdump(data + 21, size - 21);
}
static void read_bd_data_rsp(uint16_t index, const void *data, uint8_t size)
{
uint8_t status = get_u8(data);
print_status(status);
packet_print_addr("Address", data + 1, 0x00);
packet_hexdump(data + 7, size - 7);
}
static void write_bd_address_cmd(uint16_t index, const void *data, uint8_t size)
{
packet_print_addr("Address", data, 0x00);
}
static void act_deact_traces_cmd(uint16_t index, const void *data, uint8_t size)
{
uint8_t tx = get_u8(data);
uint8_t tx_arq = get_u8(data + 1);
uint8_t rx = get_u8(data + 2);
print_field("Transmit traces: 0x%2.2x", tx);
print_field("Transmit ARQ: 0x%2.2x", tx_arq);
print_field("Receive traces: 0x%2.2x", rx);
}
static void stimulate_exception_cmd(uint16_t index, const void *data,
uint8_t size)
{
uint8_t type = get_u8(data);
const char *str;
switch (type) {
case 0x00:
str = "Fatal Exception";
break;
case 0x01:
str = "Debug Exception";
break;
default:
str = "Reserved";
break;
}
print_field("Type: %s (0x%2.2x)", str, type);
}
static const struct {
uint8_t bit;
const char *str;
} events_table[] = {
{ 0, "Bootup" },
{ 1, "SCO Rejected via LMP" },
{ 2, "PTT Switch Notification" },
{ 7, "Scan Status" },
{ 9, "Debug Exception" },
{ 10, "Fatal Exception" },
{ 11, "System Exception" },
{ 13, "LE Link Established" },
{ 14, "FW Trace String" },
{ }
};
static void set_event_mask_cmd(uint16_t index, const void *data, uint8_t size)
{
const uint8_t *events_array = data;
uint64_t mask, events = 0;
int i;
for (i = 0; i < 8; i++)
events |= ((uint64_t) events_array[i]) << (i * 8);
print_field("Mask: 0x%16.16" PRIx64, events);
mask = events;
for (i = 0; events_table[i].str; i++) {
if (events & (((uint64_t) 1) << events_table[i].bit)) {
print_field(" %s", events_table[i].str);
mask &= ~(((uint64_t) 1) << events_table[i].bit);
}
}
if (mask)
print_text(COLOR_UNKNOWN_EVENT_MASK, " Unknown mask "
"(0x%16.16" PRIx64 ")", mask);
}
static void ddc_config_write_cmd(uint16_t index, const void *data, uint8_t size)
{
while (size > 0) {
uint8_t param_len = get_u8(data);
uint16_t param_id = get_le16(data + 1);
print_field("Identifier: 0x%4.4x", param_id);
packet_hexdump(data + 3, param_len - 2);
data += param_len + 1;
size -= param_len + 1;
}
}
static void ddc_config_write_rsp(uint16_t index, const void *data, uint8_t size)
{
uint8_t status = get_u8(data);
uint16_t param_id = get_le16(data + 1);
print_status(status);
print_field("Identifier: 0x%4.4x", param_id);
}
static void memory_write_cmd(uint16_t index, const void *data, uint8_t size)
{
uint32_t addr = get_le32(data);
uint8_t mode = get_u8(data + 4);
uint8_t length = get_u8(data + 5);
const char *str;
print_field("Address: 0x%8.8x", addr);
switch (mode) {
case 0x00:
str = "Byte access";
break;
case 0x01:
str = "Half word access";
break;
case 0x02:
str = "Word access";
break;
default:
str = "Reserved";
break;
}
print_field("Mode: %s (0x%2.2x)", str, mode);
print_field("Length: %u", length);
packet_hexdump(data + 6, size - 6);
}
static void read_supported_features_cmd(uint16_t index, const void *data,
uint8_t size)
{
uint8_t page = get_u8(data);
print_field("Page: 0x%2.2x", page);
}
static void read_supported_features_rsp(uint16_t index, const void *data,
uint8_t size)
{
uint8_t status = get_u8(data);
uint8_t page = get_u8(data + 1);
uint8_t max_pages = get_u8(data + 2);
print_status(status);
print_field("Page: 0x%2.2x", page);
print_field("Max Pages: 0x%2.2x", max_pages);
print_field("Supported Features:");
packet_hexdump(data + 3, size - 3);
}
static const struct vendor_ocf vendor_ocf_table[] = {
{ 0x001, "Reset",
reset_cmd, 8, true,
status_rsp, 1, true },
{ 0x002, "No Operation" },
{ 0x005, "Read Version",
read_version_cmd, 0, false,
read_version_rsp, 1, false },
{ 0x006, "Set UART Baudrate",
set_uart_baudrate_cmd, 1, true,
status_rsp, 1, true },
{ 0x007, "Enable LPM" },
{ 0x008, "PCM Write Configuration" },
{ 0x009, "Secure Send",
secure_send_cmd, 1, false,
status_rsp, 1, true },
{ 0x00d, "Read Secure Boot Params",
null_cmd, 0, true },
{ 0x00e, "Write Secure Boot Params" },
{ 0x00f, "Unlock" },
{ 0x010, "Change UART Baudrate" },
{ 0x011, "Manufacturer Mode",
manufacturer_mode_cmd, 2, true,
status_rsp, 1, true },
{ 0x012, "Read Link RSSI" },
{ 0x022, "Get Exception Info" },
{ 0x024, "Clear Exception Info" },
{ 0x02f, "Write BD Data",
write_bd_data_cmd, 6, false },
{ 0x030, "Read BD Data",
null_cmd, 0, true,
read_bd_data_rsp, 7, false },
{ 0x031, "Write BD Address",
write_bd_address_cmd, 6, true,
status_rsp, 1, true },
{ 0x032, "Flow Specification" },
{ 0x034, "Read Secure ID" },
{ 0x038, "Set Synchronous USB Interface Type" },
{ 0x039, "Config Synchronous Interface" },
{ 0x03f, "SW RF Kill",
null_cmd, 0, true,
status_rsp, 1, true },
{ 0x043, "Activate Deactivate Traces",
act_deact_traces_cmd, 3, true },
{ 0x04d, "Stimulate Exception",
stimulate_exception_cmd, 1, true,
status_rsp, 1, true },
{ 0x050, "Read HW Version" },
{ 0x052, "Set Event Mask",
set_event_mask_cmd, 8, true,
status_rsp, 1, true },
{ 0x053, "Config_Link_Controller" },
{ 0x089, "DDC Write" },
{ 0x08a, "DDC Read" },
{ 0x08b, "DDC Config Write",
ddc_config_write_cmd, 3, false,
ddc_config_write_rsp, 3, true },
{ 0x08c, "DDC Config Read" },
{ 0x08d, "Memory Read" },
{ 0x08e, "Memory Write",
memory_write_cmd, 6, false,
status_rsp, 1, true },
{ 0x0a6, "Read Supported Features",
read_supported_features_cmd, 1, true,
read_supported_features_rsp, 19, true },
{ }
};
const struct vendor_ocf *intel_vendor_ocf(uint16_t ocf)
{
int i;
for (i = 0; vendor_ocf_table[i].str; i++) {
if (vendor_ocf_table[i].ocf == ocf)
return &vendor_ocf_table[i];
}
return NULL;
}
static void startup_evt(uint16_t index, const void *data, uint8_t size)
{
}
static void fatal_exception_evt(uint16_t index, const void *data, uint8_t size)
{
uint16_t line = get_le16(data);
uint8_t module = get_u8(data + 2);
uint8_t reason = get_u8(data + 3);
print_field("Line: %u", line);
print_module(module);
print_field("Reason: 0x%2.2x", reason);
}
static void bootup_evt(uint16_t index, const void *data, uint8_t size)
{
uint8_t zero = get_u8(data);
uint8_t num_packets = get_u8(data + 1);
uint8_t source = get_u8(data + 2);
uint8_t reset_type = get_u8(data + 3);
uint8_t reset_reason = get_u8(data + 4);
uint8_t ddc_status = get_u8(data + 5);
const char *str;
print_field("Zero: 0x%2.2x", zero);
print_field("Number of packets: %d", num_packets);
switch (source) {
case 0x00:
str = "Bootloader";
break;
case 0x01:
str = "Operational firmware";
break;
case 0x02:
str = "Self test firmware";
break;
default:
str = "Reserved";
break;
}
print_field("Source: %s (0x%2.2x)", str, source);
switch (reset_type) {
case 0x00:
str = "Hardware reset";
break;
case 0x01:
str = "Soft watchdog reset";
break;
case 0x02:
str = "Soft software reset";
break;
case 0x03:
str = "Hard watchdog reset";
break;
case 0x04:
str = "Hard software reset";
break;
default:
str = "Reserved";
break;
}
print_field("Reset type: %s (0x%2.2x)", str, reset_type);
switch (reset_reason) {
case 0x00:
str = "Power on";
break;
case 0x01:
str = "Reset command";
break;
case 0x02:
str = "Intel reset command";
break;
case 0x03:
str = "Watchdog";
break;
case 0x04:
str = "Fatal exception";
break;
case 0x05:
str = "System exception";
break;
case 0xff:
str = "Unknown";
break;
default:
str = "Reserved";
break;
}
print_field("Reset reason: %s (0x%2.2x)", str, reset_reason);
switch (ddc_status) {
case 0x00:
str = "Firmware default";
break;
case 0x01:
str = "Firmware default plus OTP";
break;
case 0x02:
str = "Persistent RAM";
break;
case 0x03:
str = "Not used";
break;
default:
str = "Reserved";
break;
}
print_field("DDC status: %s (0x%2.2x)", str, ddc_status);
}
static void default_bd_data_evt(uint16_t index, const void *data, uint8_t size)
{
uint8_t mem_status = get_u8(data);
const char *str;
switch (mem_status) {
case 0x02:
str = "Invalid manufacturing data";
break;
default:
str = "Reserved";
break;
}
print_field("Memory status: %s (0x%2.2x)", str, mem_status);
}
static void secure_send_commands_result_evt(uint16_t index, const void *data,
uint8_t size)
{
uint8_t result = get_u8(data);
uint16_t opcode = get_le16(data + 1);
uint16_t ogf = cmd_opcode_ogf(opcode);
uint16_t ocf = cmd_opcode_ocf(opcode);
uint8_t status = get_u8(data + 3);
const char *str;
switch (result) {
case 0x00:
str = "Success";
break;
case 0x01:
str = "General failure";
break;
case 0x02:
str = "Hardware failure";
break;
case 0x03:
str = "Signature verification failed";
break;
case 0x04:
str = "Parsing error of command buffer";
break;
case 0x05:
str = "Command execution failure";
break;
case 0x06:
str = "Command parameters error";
break;
case 0x07:
str = "Command missing";
break;
default:
str = "Reserved";
break;
}
print_field("Result: %s (0x%2.2x)", str, result);
print_field("Opcode: 0x%4.4x (0x%2.2x|0x%4.4x)", opcode, ogf, ocf);
print_status(status);
}
static void debug_exception_evt(uint16_t index, const void *data, uint8_t size)
{
uint16_t line = get_le16(data);
uint8_t module = get_u8(data + 2);
uint8_t reason = get_u8(data + 3);
print_field("Line: %u", line);
print_module(module);
print_field("Reason: 0x%2.2x", reason);
}
static void le_link_established_evt(uint16_t index, const void *data,
uint8_t size)
{
uint16_t handle = get_le16(data);
uint32_t access_addr = get_le32(data + 10);
print_field("Handle: %u", handle);
packet_hexdump(data + 2, 8);
print_field("Access address: 0x%8.8x", access_addr);
packet_hexdump(data + 14, size - 14);
}
static void scan_status_evt(uint16_t index, const void *data, uint8_t size)
{
uint8_t enable = get_u8(data);
print_field("Inquiry scan: %s",
(enable & 0x01) ? "Enabled" : "Disabled");
print_field("Page scan: %s",
(enable & 0x02) ? "Enabled" : "Disabled");
if (enable & 0xfc)
print_text(COLOR_UNKNOWN_SCAN_STATUS,
" Unknown status (0x%2.2x)", enable & 0xfc);
}
static void act_deact_traces_complete_evt(uint16_t index, const void *data,
uint8_t size)
{
uint8_t status = get_u8(data);
print_status(status);
}
static void lmp_pdu_trace_evt(uint16_t index, const void *data, uint8_t size)
{
uint8_t type, len, id;
uint16_t handle, count;
uint32_t clock;
const char *str;
type = get_u8(data);
handle = get_le16(data + 1);
switch (type) {
case 0x00:
str = "RX LMP";
break;
case 0x01:
str = "TX LMP";
break;
case 0x02:
str = "ACK LMP";
break;
case 0x03:
str = "RX LL";
break;
case 0x04:
str = "TX LL";
break;
case 0x05:
str = "ACK LL";
break;
default:
str = "Unknown";
break;
}
print_field("Type: %s (0x%2.2x)", str, type);
print_field("Handle: %u", handle);
switch (type) {
case 0x00:
len = size - 8;
clock = get_le32(data + 4 + len);
packet_hexdump(data + 3, 1);
lmp_packet(data + 4, len, false);
print_field("Clock: 0x%8.8x", clock);
break;
case 0x01:
len = size - 9;
clock = get_le32(data + 4 + len);
id = get_u8(data + 4 + len + 4);
packet_hexdump(data + 3, 1);
lmp_packet(data + 4, len, false);
print_field("Clock: 0x%8.8x", clock);
print_field("ID: 0x%2.2x", id);
break;
case 0x02:
clock = get_le32(data + 3);
id = get_u8(data + 3 + 4);
print_field("Clock: 0x%8.8x", clock);
print_field("ID: 0x%2.2x", id);
break;
case 0x03:
len = size - 8;
count = get_le16(data + 3);
print_field("Count: 0x%4.4x", count);
packet_hexdump(data + 3 + 2 + 1, 2);
llcp_packet(data + 8, len, false);
break;
case 0x04:
len = size - 8;
count = get_le16(data + 3);
id = get_u8(data + 3 + 2);
print_field("Count: 0x%4.4x", count);
print_field("ID: 0x%2.2x", id);
packet_hexdump(data + 3 + 2 + 1, 2);
llcp_packet(data + 8, len, false);
break;
case 0x05:
count = get_le16(data + 3);
id = get_u8(data + 3 + 2);
print_field("Count: 0x%4.4x", count);
print_field("ID: 0x%2.2x", id);
break;
default:
packet_hexdump(data + 3, size - 3);
break;
}
}
static void write_bd_data_complete_evt(uint16_t index, const void *data,
uint8_t size)
{
uint8_t status = get_u8(data);
print_status(status);
}
static void sco_rejected_via_lmp_evt(uint16_t index, const void *data,
uint8_t size)
{
uint8_t reason = get_u8(data + 6);
packet_print_addr("Address", data, 0x00);
packet_print_error("Reason", reason);
}
static void ptt_switch_notification_evt(uint16_t index, const void *data,
uint8_t size)
{
uint16_t handle = get_le16(data);
uint8_t table = get_u8(data + 2);
const char *str;
print_field("Handle: %u", handle);
switch (table) {
case 0x00:
str = "Basic rate";
break;
case 0x01:
str = "Enhanced data rate";
break;
default:
str = "Reserved";
break;
}
print_field("Packet type table: %s (0x%2.2x)", str, table);
}
static void system_exception_evt(uint16_t index, const void *data, uint8_t size)
{
uint8_t type = get_u8(data);
const char *str;
switch (type) {
case 0x00:
str = "No Exception";
break;
case 0x01:
str = "Undefined Instruction";
break;
case 0x02:
str = "Prefetch abort";
break;
case 0x03:
str = "Data abort";
break;
default:
str = "Reserved";
break;
}
print_field("Type: %s (0x%2.2x)", str, type);
packet_hexdump(data + 1, size - 1);
}
static const struct vendor_evt vendor_evt_table[] = {
{ 0x00, "Startup",
startup_evt, 0, true },
{ 0x01, "Fatal Exception",
fatal_exception_evt, 4, true },
{ 0x02, "Bootup",
bootup_evt, 6, true },
{ 0x05, "Default BD Data",
default_bd_data_evt, 1, true },
{ 0x06, "Secure Send Commands Result",
secure_send_commands_result_evt, 4, true },
{ 0x08, "Debug Exception",
debug_exception_evt, 4, true },
{ 0x0f, "LE Link Established",
le_link_established_evt, 26, true },
{ 0x11, "Scan Status",
scan_status_evt, 1, true },
{ 0x16, "Activate Deactivate Traces Complete",
act_deact_traces_complete_evt, 1, true },
{ 0x17, "LMP PDU Trace",
lmp_pdu_trace_evt, 3, false },
{ 0x19, "Write BD Data Complete",
write_bd_data_complete_evt, 1, true },
{ 0x25, "SCO Rejected via LMP",
sco_rejected_via_lmp_evt, 7, true },
{ 0x26, "PTT Switch Notification",
ptt_switch_notification_evt, 3, true },
{ 0x29, "System Exception",
system_exception_evt, 133, true },
{ 0x2c, "FW Trace String" },
{ 0x2e, "FW Trace Binary" },
{ }
};
/*
* An Intel telemetry subevent is of the TLV format.
* - Type: takes 1 byte. This is the subevent_id.
* - Length: takes 1 byte.
* - Value: takes |Length| bytes.
*/
struct intel_tlv {
uint8_t subevent_id;
uint8_t length;
uint8_t value[];
};
#define TLV_SIZE(tlv) (*((const uint8_t *) tlv + 1) + 2 * sizeof(uint8_t))
#define NEXT_TLV(tlv) (const struct intel_tlv *) \
((const uint8_t *) tlv + TLV_SIZE(tlv))
static void ext_evt_type(const struct intel_tlv *tlv)
{
uint8_t evt_type = get_u8(tlv->value);
const char *str;
switch (evt_type) {
case 0x00:
str = "System Exception";
break;
case 0x01:
str = "Fatal Exception";
break;
case 0x02:
str = "Debug Exception";
break;
case 0x03:
str = "Connection Event for BR/EDR Link Type";
break;
case 0x04:
str = "Disconnection Event";
break;
case 0x05:
str = "Audio Link Quality Report Type";
break;
case 0x06:
str = "Stats for BR/EDR Link Type";
break;
default:
print_text(COLOR_UNKNOWN_EXT_EVENT,
"Unknown extended telemetry event type (0x%2.2x)",
evt_type);
packet_hexdump((const void *) tlv,
tlv->length + 2 * sizeof(uint8_t));
return;
}
print_field("Extended event type (0x%2.2x): %s (0x%2.2x)",
tlv->subevent_id, str, evt_type);
}
static void ext_acl_evt_conn_handle(const struct intel_tlv *tlv)
{
uint16_t conn_handle = get_le16(tlv->value);
print_field("ACL connection handle (0x%2.2x): 0x%4.4x",
tlv->subevent_id, conn_handle);
}
static void ext_acl_evt_hec_errors(const struct intel_tlv *tlv)
{
uint32_t num = get_le32(tlv->value);
print_field("Rx HEC errors (0x%2.2x): %d", tlv->subevent_id, num);
}
static void ext_acl_evt_crc_errors(const struct intel_tlv *tlv)
{
uint32_t num = get_le32(tlv->value);
print_field("Rx CRC errors (0x%2.2x): %d", tlv->subevent_id, num);
}
static void ext_acl_evt_num_pkt_from_host(const struct intel_tlv *tlv)
{
uint32_t num = get_le32(tlv->value);
print_field("Packets from host (0x%2.2x): %d",
tlv->subevent_id, num);
}
static void ext_acl_evt_num_tx_pkt_to_air(const struct intel_tlv *tlv)
{
uint32_t num = get_le32(tlv->value);
print_field("Tx packets (0x%2.2x): %d", tlv->subevent_id, num);
}
static void ext_acl_evt_num_tx_pkt_retry(const struct intel_tlv *tlv)
{
char *subevent_str;
uint32_t num = get_le32(tlv->value);
switch (tlv->subevent_id) {
case 0x4f:
subevent_str = "Tx packets 0 retries";
break;
case 0x50:
subevent_str = "Tx packets 1 retries";
break;
case 0x51:
subevent_str = "Tx packets 2 retries";
break;
case 0x52:
subevent_str = "Tx packets 3 retries";
break;
case 0x53:
subevent_str = "Tx packets 4 retries and more";
break;
default:
subevent_str = "Unknown";
break;
}
print_field("%s (0x%2.2x): %d", subevent_str, tlv->subevent_id, num);
}
static void ext_acl_evt_num_tx_pkt_type(const struct intel_tlv *tlv)
{
char *packet_type_str;
uint32_t num = get_le32(tlv->value);
switch (tlv->subevent_id) {
case 0x54:
packet_type_str = "DH1";
break;
case 0x55:
packet_type_str = "DH3";
break;
case 0x56:
packet_type_str = "DH5";
break;
case 0x57:
packet_type_str = "2DH1";
break;
case 0x58:
packet_type_str = "2DH3";
break;
case 0x59:
packet_type_str = "2DH5";
break;
case 0x5a:
packet_type_str = "3DH1";
break;
case 0x5b:
packet_type_str = "3DH3";
break;
case 0x5c:
packet_type_str = "3DH5";
break;
default:
packet_type_str = "Unknown";
break;
}
print_field("Tx %s packets (0x%2.2x): %d",
packet_type_str, tlv->subevent_id, num);
}
static void ext_acl_evt_num_rx_pkt_from_air(const struct intel_tlv *tlv)
{
uint32_t num = get_le32(tlv->value);
print_field("Rx packets (0x%2.2x): %d",
tlv->subevent_id, num);
}
static void ext_acl_evt_link_throughput(const struct intel_tlv *tlv)
{
uint32_t num = get_le32(tlv->value);
print_field("ACL link throughput (KBps) (0x%2.2x): %d",
tlv->subevent_id, num);
}
static void ext_acl_evt_max_packet_latency(const struct intel_tlv *tlv)
{
uint32_t num = get_le32(tlv->value);
print_field("ACL max packet latency (ms) (0x%2.2x): %d",
tlv->subevent_id, num);
}
static void ext_acl_evt_avg_packet_latency(const struct intel_tlv *tlv)
{
uint32_t num = get_le32(tlv->value);
print_field("ACL avg packet latency (ms) (0x%2.2x): %d",
tlv->subevent_id, num);
}
static void ext_sco_evt_conn_handle(const struct intel_tlv *tlv)
{
uint16_t conn_handle = get_le16(tlv->value);
print_field("SCO/eSCO connection handle (0x%2.2x): 0x%4.4x",
tlv->subevent_id, conn_handle);
}
static void ext_sco_evt_num_rx_pkt_from_air(const struct intel_tlv *tlv)
{
uint32_t num = get_le32(tlv->value);
print_field("Packets from host (0x%2.2x): %d", tlv->subevent_id, num);
}
static void ext_sco_evt_num_tx_pkt_to_air(const struct intel_tlv *tlv)
{
uint32_t num = get_le32(tlv->value);
print_field("Tx packets (0x%2.2x): %d", tlv->subevent_id, num);
}
static void ext_sco_evt_num_rx_payloads_lost(const struct intel_tlv *tlv)
{
uint32_t num = get_le32(tlv->value);
print_field("Rx payload lost (0x%2.2x): %d", tlv->subevent_id, num);
}
static void ext_sco_evt_num_tx_payloads_lost(const struct intel_tlv *tlv)
{
uint32_t num = get_le32(tlv->value);
print_field("Tx payload lost (0x%2.2x): %d", tlv->subevent_id, num);
}
static void slots_errors(const struct intel_tlv *tlv, const char *type_str)
{
/* The subevent has 5 slots where each slot is of the uint32_t type. */
uint32_t num[5];
const uint8_t *data = tlv->value;
int i;
if (tlv->length != 5 * sizeof(uint32_t)) {
print_text(COLOR_UNKNOWN_EXT_EVENT,
" Invalid subevent length (%d)", tlv->length);
return;
}
for (i = 0; i < 5; i++) {
num[i] = get_le32(data);
data += sizeof(uint32_t);
}
print_field("%s (0x%2.2x): %d %d %d %d %d", type_str, tlv->subevent_id,
num[0], num[1], num[2], num[3], num[4]);
}
static void ext_sco_evt_num_no_sync_errors(const struct intel_tlv *tlv)
{
slots_errors(tlv, "Rx No SYNC errors");
}
static void ext_sco_evt_num_hec_errors(const struct intel_tlv *tlv)
{
slots_errors(tlv, "Rx HEC errors");
}
static void ext_sco_evt_num_crc_errors(const struct intel_tlv *tlv)
{
slots_errors(tlv, "Rx CRC errors");
}
static void ext_sco_evt_num_naks(const struct intel_tlv *tlv)
{
slots_errors(tlv, "Rx NAK errors");
}
static void ext_sco_evt_num_failed_tx_by_wifi(const struct intel_tlv *tlv)
{
slots_errors(tlv, "Failed Tx due to Wifi coex");
}
static void ext_sco_evt_num_failed_rx_by_wifi(const struct intel_tlv *tlv)
{
slots_errors(tlv, "Failed Rx due to Wifi coex");
}
static void ext_sco_evt_samples_inserted(const struct intel_tlv *tlv)
{
uint32_t num = get_le32(tlv->value);
print_field("Late samples inserted based on CDC (0x%2.2x): %d",
tlv->subevent_id, num);
}
static void ext_sco_evt_samples_dropped(const struct intel_tlv *tlv)
{
uint32_t num = get_le32(tlv->value);
print_field("Samples dropped (0x%2.2x): %d", tlv->subevent_id, num);
}
static void ext_sco_evt_mute_samples(const struct intel_tlv *tlv)
{
uint32_t num = get_le32(tlv->value);
print_field("Mute samples sent at initial connection (0x%2.2x): %d",
tlv->subevent_id, num);
}
static void ext_sco_evt_plc_injection_data(const struct intel_tlv *tlv)
{
uint32_t num = get_le32(tlv->value);
print_field("PLC injection data (0x%2.2x): %d", tlv->subevent_id, num);
}
static const struct intel_ext_subevent {
uint8_t subevent_id;
uint8_t length;
void (*func)(const struct intel_tlv *tlv);
} intel_ext_subevent_table[] = {
{ 0x01, 1, ext_evt_type },
/* ACL audio link quality subevents */
{ 0x4a, 2, ext_acl_evt_conn_handle },
{ 0x4b, 4, ext_acl_evt_hec_errors },
{ 0x4c, 4, ext_acl_evt_crc_errors },
{ 0x4d, 4, ext_acl_evt_num_pkt_from_host },
{ 0x4e, 4, ext_acl_evt_num_tx_pkt_to_air },
{ 0x4f, 4, ext_acl_evt_num_tx_pkt_retry },
{ 0x50, 4, ext_acl_evt_num_tx_pkt_retry },
{ 0x51, 4, ext_acl_evt_num_tx_pkt_retry },
{ 0x52, 4, ext_acl_evt_num_tx_pkt_retry },
{ 0x53, 4, ext_acl_evt_num_tx_pkt_retry },
{ 0x54, 4, ext_acl_evt_num_tx_pkt_type },
{ 0x55, 4, ext_acl_evt_num_tx_pkt_type },
{ 0x56, 4, ext_acl_evt_num_tx_pkt_type },
{ 0x57, 4, ext_acl_evt_num_tx_pkt_type },
{ 0x58, 4, ext_acl_evt_num_tx_pkt_type },
{ 0x59, 4, ext_acl_evt_num_tx_pkt_type },
{ 0x5a, 4, ext_acl_evt_num_tx_pkt_type },
{ 0x5b, 4, ext_acl_evt_num_tx_pkt_type },
{ 0x5c, 4, ext_acl_evt_num_tx_pkt_type },
{ 0x5d, 4, ext_acl_evt_num_rx_pkt_from_air },
{ 0x5e, 4, ext_acl_evt_link_throughput },
{ 0x5f, 4, ext_acl_evt_max_packet_latency },
{ 0x60, 4, ext_acl_evt_avg_packet_latency },
/* SCO/eSCO audio link quality subevents */
{ 0x6a, 2, ext_sco_evt_conn_handle },
{ 0x6b, 4, ext_sco_evt_num_rx_pkt_from_air },
{ 0x6c, 4, ext_sco_evt_num_tx_pkt_to_air },
{ 0x6d, 4, ext_sco_evt_num_rx_payloads_lost },
{ 0x6e, 4, ext_sco_evt_num_tx_payloads_lost },
{ 0x6f, 20, ext_sco_evt_num_no_sync_errors },
{ 0x70, 20, ext_sco_evt_num_hec_errors },
{ 0x71, 20, ext_sco_evt_num_crc_errors },
{ 0x72, 20, ext_sco_evt_num_naks },
{ 0x73, 20, ext_sco_evt_num_failed_tx_by_wifi },
{ 0x74, 20, ext_sco_evt_num_failed_rx_by_wifi },
{ 0x75, 4, ext_sco_evt_samples_inserted },
{ 0x76, 4, ext_sco_evt_samples_dropped },
{ 0x77, 4, ext_sco_evt_mute_samples },
{ 0x78, 4, ext_sco_evt_plc_injection_data },
/* end */
{ 0x0, 0}
};
static const struct intel_tlv *process_ext_subevent(const struct intel_tlv *tlv,
const struct intel_tlv *last_tlv)
{
const struct intel_tlv *next_tlv = NEXT_TLV(tlv);
const struct intel_ext_subevent *subevent = NULL;
int i;
for (i = 0; intel_ext_subevent_table[i].length > 0; i++) {
if (intel_ext_subevent_table[i].subevent_id ==
tlv->subevent_id) {
subevent = &intel_ext_subevent_table[i];
break;
}
}
if (!subevent) {
print_text(COLOR_UNKNOWN_EXT_EVENT,
"Unknown extended subevent 0x%2.2x",
tlv->subevent_id);
return NULL;
}
if (tlv->length != subevent->length) {
print_text(COLOR_ERROR, "Invalid length %d of subevent 0x%2.2x",
tlv->length, tlv->subevent_id);
return NULL;
}
if (next_tlv > last_tlv) {
print_text(COLOR_ERROR, "Subevent exceeds the buffer size.");
return NULL;
}
subevent->func(tlv);
return next_tlv;
}
static void intel_vendor_ext_evt(uint16_t index, const void *data, uint8_t size)
{
/* The data pointer points to a number of tlv.*/
const struct intel_tlv *tlv = data;
const struct intel_tlv *last_tlv = data + size;
/* Process every tlv subevent until reaching last_tlv.
* The decoding process terminates normally when tlv == last_tlv.
*/
while (tlv && tlv < last_tlv)
tlv = process_ext_subevent(tlv, last_tlv);
/* If an error occurs in decoding the subevents, hexdump the packet. */
if (!tlv)
packet_hexdump(data, size);
}
/* Vendor extended events with a vendor prefix. */
static const struct vendor_evt vendor_prefix_evt_table[] = {
{ 0x03, "Extended Telemetry", intel_vendor_ext_evt },
{ }
};
const uint8_t intel_vendor_prefix[] = {0x87, 0x80};
#define INTEL_VENDOR_PREFIX_SIZE sizeof(intel_vendor_prefix)
/*
* The vendor event with Intel vendor prefix.
* Its format looks like
* 0xff <length> <vendor_prefix> <subopcode> <data>
* where Intel's <vendor_prefix> is 0x8780.
*
* When <subopcode> == 0x03, it is a telemetry event; and
* <data> is a number of tlv data.
*/
struct vendor_prefix_evt {
uint8_t prefix_data[INTEL_VENDOR_PREFIX_SIZE];
uint8_t subopcode;
};
static const struct vendor_evt *intel_vendor_prefix_evt(const void *data,
int *consumed_size)
{
unsigned int i;
const struct vendor_prefix_evt *vnd = data;
char prefix_string[INTEL_VENDOR_PREFIX_SIZE * 2 + 1] = { 0 };
/* Check if the vendor prefix matches. */
for (i = 0; i < INTEL_VENDOR_PREFIX_SIZE; i++) {
if (vnd->prefix_data[i] != intel_vendor_prefix[i])
return NULL;
sprintf(prefix_string + i * 2, "%02x", vnd->prefix_data[i]);
}
print_field("Vendor Prefix (0x%s)", prefix_string);
/*
* Handle the vendor event with a vendor prefix.
* 0xff <length> <vendor_prefix> <subopcode> <data>
* This loop checks whether the <subopcode> exists in the
* vendor_prefix_evt_table.
*/
for (i = 0; vendor_prefix_evt_table[i].str; i++) {
if (vendor_prefix_evt_table[i].evt == vnd->subopcode) {
*consumed_size = sizeof(struct vendor_prefix_evt);
return &vendor_prefix_evt_table[i];
}
}
return NULL;
}
const struct vendor_evt *intel_vendor_evt(const void *data, int *consumed_size)
{
uint8_t evt = *((const uint8_t *) data);
int i;
/*
* Handle the vendor event without a vendor prefix.
* 0xff <length> <evt> <data>
* This loop checks whether the <evt> exists in the vendor_evt_table.
*/
for (i = 0; vendor_evt_table[i].str; i++) {
if (vendor_evt_table[i].evt == evt)
return &vendor_evt_table[i];
}
/*
* It is not a regular event. Check whether it is a vendor extended
* event that comes with a vendor prefix followed by a subopcode.
*/
return intel_vendor_prefix_evt(data, consumed_size);
}