bluez/test/hciemu.c
Szymon Janc b3fa97f8e7 hciemu: Fix build errors due to unaligned memory access
This fix following build errors on ARM.

  CC     test/hciemu.o
test/hciemu.c: In function num_completed_pkts:
test/hciemu.c:429:4: error: cast increases required alignment of target
	 type [-Werror=cast-align]
test/hciemu.c:430:4: error: cast increases required alignment of target
	type [-Werror=cast-align]
cc1: all warnings being treated as errors
make[1]: *** [test/hciemu.o] Error 1
make: *** [all] Error 2
2012-09-05 12:29:51 +03:00

1295 lines
26 KiB
C

/*
*
* BlueZ - Bluetooth protocol stack for Linux
*
* Copyright (C) 2000-2002 Maxim Krasnyansky <maxk@qualcomm.com>
* Copyright (C) 2003-2010 Marcel Holtmann <marcel@holtmann.org>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <signal.h>
#include <getopt.h>
#include <syslog.h>
#include <sys/time.h>
#include <sys/epoll.h>
#include <sys/socket.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/hci.h>
#include <bluetooth/hci_lib.h>
#include <bluetooth/l2cap.h>
#define VHCI_DEV "/dev/vhci"
#define VHCI_MAX_CONN 12
#define VHCI_ACL_MTU 192
#define VHCI_ACL_MAX_PKT 8
struct vhci_device {
uint8_t features[8];
uint8_t name[248];
uint8_t dev_class[3];
uint8_t scan_enable;
uint8_t ssp_mode;
uint8_t inq_mode;
uint8_t eir_fec;
uint8_t eir_data[HCI_MAX_EIR_LENGTH];
uint8_t le_mode;
uint8_t le_simul;
uint16_t acl_cnt;
bdaddr_t bdaddr;
int dev_fd;
int scan_fd;
int dd;
};
struct vhci_conn {
bdaddr_t dest;
uint16_t handle;
int fd;
};
struct vhci_link_info {
bdaddr_t bdaddr;
uint8_t dev_class[3];
uint8_t link_type;
uint8_t role;
} __attribute__ ((packed));
static struct vhci_device vdev;
static struct vhci_conn *vconn[VHCI_MAX_CONN];
struct btsnoop_hdr {
uint8_t id[8]; /* Identification Pattern */
uint32_t version; /* Version Number = 1 */
uint32_t type; /* Datalink Type */
} __attribute__ ((packed));
#define BTSNOOP_HDR_SIZE (sizeof(struct btsnoop_hdr))
struct btsnoop_pkt {
uint32_t size; /* Original Length */
uint32_t len; /* Included Length */
uint32_t flags; /* Packet Flags */
uint32_t drops; /* Cumulative Drops */
uint64_t ts; /* Timestamp microseconds */
uint8_t data[0]; /* Packet Data */
} __attribute__ ((packed));
#define BTSNOOP_PKT_SIZE (sizeof(struct btsnoop_pkt))
static uint8_t btsnoop_id[] = { 0x62, 0x74, 0x73, 0x6e, 0x6f, 0x6f, 0x70, 0x00 };
#define MAX_EPOLL_EVENTS 10
static int epoll_fd;
static volatile sig_atomic_t __io_canceled = 0;
static void sig_term(int sig)
{
__io_canceled = 1;
}
static inline int read_n(int fd, void *buf, int len)
{
register int w, t = 0;
while (!__io_canceled && len > 0) {
if ((w = read(fd, buf, len)) < 0 ){
if( errno == EINTR || errno == EAGAIN )
continue;
return -1;
}
if (!w)
return 0;
len -= w; buf += w; t += w;
}
return t;
}
/* Write exactly len bytes (Signal safe)*/
static inline int write_n(int fd, void *buf, int len)
{
register int w, t = 0;
while (!__io_canceled && len > 0) {
if ((w = write(fd, buf, len)) < 0 ){
if( errno == EINTR || errno == EAGAIN )
continue;
return -1;
}
if (!w)
return 0;
len -= w; buf += w; t += w;
}
return t;
}
static int create_snoop(char *file)
{
struct btsnoop_hdr hdr;
int fd, len;
fd = open(file, O_WRONLY | O_CREAT, S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
if (fd < 0)
return fd;
memcpy(hdr.id, btsnoop_id, sizeof(btsnoop_id));
hdr.version = htonl(1);
hdr.type = htonl(1002);
len = write(fd, &hdr, BTSNOOP_HDR_SIZE);
if (len < 0) {
close(fd);
return -EIO;
}
if (len != BTSNOOP_HDR_SIZE) {
close(fd);
return -1;
}
return fd;
}
static int write_snoop(int fd, int type, int incoming,
unsigned char *buf, int len)
{
struct btsnoop_pkt pkt;
struct timeval tv;
uint32_t size = len;
uint64_t ts;
if (fd < 0)
return -1;
memset(&tv, 0, sizeof(tv));
gettimeofday(&tv, NULL);
ts = (tv.tv_sec - 946684800ll) * 1000000ll + tv.tv_usec;
pkt.size = htonl(size);
pkt.len = pkt.size;
pkt.flags = ntohl(incoming & 0x01);
pkt.drops = htonl(0);
pkt.ts = hton64(ts + 0x00E03AB44A676000ll);
if (type == HCI_COMMAND_PKT || type == HCI_EVENT_PKT)
pkt.flags |= ntohl(0x02);
if (write(fd, &pkt, BTSNOOP_PKT_SIZE) < 0)
return -errno;
if (write(fd, buf, size) < 0)
return -errno;
return 0;
}
static struct vhci_conn *conn_get_by_bdaddr(bdaddr_t *ba)
{
register int i;
for (i = 0; i < VHCI_MAX_CONN; i++)
if (!bacmp(&vconn[i]->dest, ba))
return vconn[i];
return NULL;
}
static void reset_vdev(void)
{
/* Device settings */
vdev.features[0] = 0xff;
vdev.features[1] = 0xff;
vdev.features[2] = 0x8f;
vdev.features[3] = 0xfe;
vdev.features[4] = 0x9b;
vdev.features[5] = 0xf9;
vdev.features[6] = 0x00;
vdev.features[7] = 0x80;
vdev.features[4] |= 0x40; /* LE Supported */
vdev.features[6] |= 0x01; /* Extended Inquiry Response */
vdev.features[6] |= 0x02; /* BR/EDR and LE */
vdev.features[6] |= 0x08; /* Secure Simple Pairing */
memset(vdev.name, 0, sizeof(vdev.name));
strncpy((char *) vdev.name, "BlueZ (Virtual HCI)",
sizeof(vdev.name) - 1);
vdev.dev_class[0] = 0x00;
vdev.dev_class[1] = 0x00;
vdev.dev_class[2] = 0x00;
vdev.scan_enable = 0x00;
vdev.ssp_mode = 0x00;
vdev.inq_mode = 0x00;
vdev.eir_fec = 0x00;
memset(vdev.eir_data, 0, sizeof(vdev.eir_data));
vdev.le_mode = 0x00;
vdev.le_simul = 0x00;
}
static void command_status(uint16_t ogf, uint16_t ocf, uint8_t status)
{
uint8_t buf[HCI_MAX_FRAME_SIZE], *ptr = buf;
evt_cmd_status *cs;
hci_event_hdr *he;
/* Packet type */
*ptr++ = HCI_EVENT_PKT;
/* Event header */
he = (void *) ptr; ptr += HCI_EVENT_HDR_SIZE;
he->evt = EVT_CMD_STATUS;
he->plen = EVT_CMD_STATUS_SIZE;
cs = (void *) ptr; ptr += EVT_CMD_STATUS_SIZE;
cs->status = status;
cs->ncmd = 1;
cs->opcode = htobs(cmd_opcode_pack(ogf, ocf));
write_snoop(vdev.dd, HCI_EVENT_PKT, 1, buf, ptr - buf);
if (write(vdev.dev_fd, buf, ptr - buf) < 0)
syslog(LOG_ERR, "Can't send event: %s(%d)",
strerror(errno), errno);
}
static void command_complete(uint16_t ogf, uint16_t ocf, int plen, void *data)
{
uint8_t buf[HCI_MAX_FRAME_SIZE], *ptr = buf;
evt_cmd_complete *cc;
hci_event_hdr *he;
/* Packet type */
*ptr++ = HCI_EVENT_PKT;
/* Event header */
he = (void *) ptr; ptr += HCI_EVENT_HDR_SIZE;
he->evt = EVT_CMD_COMPLETE;
he->plen = EVT_CMD_COMPLETE_SIZE + plen;
cc = (void *) ptr; ptr += EVT_CMD_COMPLETE_SIZE;
cc->ncmd = 1;
cc->opcode = htobs(cmd_opcode_pack(ogf, ocf));
if (plen) {
memcpy(ptr, data, plen);
ptr += plen;
}
write_snoop(vdev.dd, HCI_EVENT_PKT, 1, buf, ptr - buf);
if (write(vdev.dev_fd, buf, ptr - buf) < 0)
syslog(LOG_ERR, "Can't send event: %s(%d)",
strerror(errno), errno);
}
static void connect_request(struct vhci_conn *conn)
{
uint8_t buf[HCI_MAX_FRAME_SIZE], *ptr = buf;
evt_conn_request *cr;
hci_event_hdr *he;
/* Packet type */
*ptr++ = HCI_EVENT_PKT;
/* Event header */
he = (void *) ptr; ptr += HCI_EVENT_HDR_SIZE;
he->evt = EVT_CONN_REQUEST;
he->plen = EVT_CONN_REQUEST_SIZE;
cr = (void *) ptr; ptr += EVT_CONN_REQUEST_SIZE;
bacpy(&cr->bdaddr, &conn->dest);
memset(&cr->dev_class, 0, sizeof(cr->dev_class));
cr->link_type = ACL_LINK;
write_snoop(vdev.dd, HCI_EVENT_PKT, 1, buf, ptr - buf);
if (write(vdev.dev_fd, buf, ptr - buf) < 0)
syslog(LOG_ERR, "Can't send event: %s (%d)",
strerror(errno), errno);
}
static void connect_complete(struct vhci_conn *conn)
{
uint8_t buf[HCI_MAX_FRAME_SIZE], *ptr = buf;
evt_conn_complete *cc;
hci_event_hdr *he;
/* Packet type */
*ptr++ = HCI_EVENT_PKT;
/* Event header */
he = (void *) ptr; ptr += HCI_EVENT_HDR_SIZE;
he->evt = EVT_CONN_COMPLETE;
he->plen = EVT_CONN_COMPLETE_SIZE;
cc = (void *) ptr; ptr += EVT_CONN_COMPLETE_SIZE;
bacpy(&cc->bdaddr, &conn->dest);
cc->status = 0x00;
cc->handle = htobs(conn->handle);
cc->link_type = ACL_LINK;
cc->encr_mode = 0x00;
write_snoop(vdev.dd, HCI_EVENT_PKT, 1, buf, ptr - buf);
if (write(vdev.dev_fd, buf, ptr - buf) < 0)
syslog(LOG_ERR, "Can't send event: %s (%d)",
strerror(errno), errno);
/* TODO: Add io_acl_data() handling */
}
static void disconn_complete(struct vhci_conn *conn)
{
uint8_t buf[HCI_MAX_FRAME_SIZE], *ptr = buf;
evt_disconn_complete *dc;
hci_event_hdr *he;
/* Packet type */
*ptr++ = HCI_EVENT_PKT;
/* Event header */
he = (void *) ptr; ptr += HCI_EVENT_HDR_SIZE;
he->evt = EVT_DISCONN_COMPLETE;
he->plen = EVT_DISCONN_COMPLETE_SIZE;
dc = (void *) ptr; ptr += EVT_DISCONN_COMPLETE_SIZE;
dc->status = 0x00;
dc->handle = htobs(conn->handle);
dc->reason = 0x00;
write_snoop(vdev.dd, HCI_EVENT_PKT, 1, buf, ptr - buf);
if (write(vdev.dev_fd, buf, ptr - buf) < 0)
syslog(LOG_ERR, "Can't send event: %s (%d)",
strerror(errno), errno);
vdev.acl_cnt = 0;
}
static void num_completed_pkts(struct vhci_conn *conn)
{
uint8_t buf[HCI_MAX_FRAME_SIZE], *ptr = buf;
evt_num_comp_pkts *np;
hci_event_hdr *he;
/* Packet type */
*ptr++ = HCI_EVENT_PKT;
/* Event header */
he = (void *) ptr; ptr += HCI_EVENT_HDR_SIZE;
he->evt = EVT_NUM_COMP_PKTS;
he->plen = EVT_NUM_COMP_PKTS_SIZE;
np = (void *) ptr; ptr += EVT_NUM_COMP_PKTS_SIZE;
np->num_hndl = 1;
bt_put_le16(conn->handle, ptr);
ptr += 2;
bt_put_le16(vdev.acl_cnt, ptr);
ptr += 2;
write_snoop(vdev.dd, HCI_EVENT_PKT, 1, buf, ptr - buf);
if (write(vdev.dev_fd, buf, ptr - buf) < 0)
syslog(LOG_ERR, "Can't send event: %s (%d)",
strerror(errno), errno);
}
static uint8_t scan_enable(uint8_t *data)
{
#if 0
struct epoll_event scan_event;
struct sockaddr_in sa;
bdaddr_t ba;
int sk, opt;
if (!(*data & SCAN_PAGE)) {
if (vdev.scan_fd >= 0) {
close(vdev.scan_fd);
vdev.scan_fd = -1;
}
return 0;
}
if (vdev.scan_fd >= 0)
return 0;
if ((sk = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
syslog(LOG_ERR, "Can't create socket: %s (%d)",
strerror(errno), errno);
return 1;
}
opt = 1;
setsockopt(sk, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
baswap(&ba, &vdev.bdaddr);
sa.sin_family = AF_INET;
memcpy(&sa.sin_addr.s_addr, &ba, sizeof(sa.sin_addr.s_addr));
memcpy(&sa.sin_port, &ba.b[4], sizeof(sa.sin_port));
if (bind(sk, (struct sockaddr *) &sa, sizeof(sa))) {
syslog(LOG_ERR, "Can't bind socket: %s (%d)",
strerror(errno), errno);
goto failed;
}
if (listen(sk, 10)) {
syslog(LOG_ERR, "Can't listen on socket: %s (%d)",
strerror(errno), errno);
goto failed;
}
memset(&scan_event, 0, sizeof(scan_event));
scan_event.events = EPOLLIN;
scan_event.data.fd = sk;
if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, sk, &scan_event) < 0) {
syslog(LOG_ERR, "Failed to setup scan event watch");
goto failed;
}
vdev.scan_fd = sk;
return 0;
failed:
close(sk);
return 1;
#endif
return data[0];
}
static void accept_connection(uint8_t *data)
{
accept_conn_req_cp *cp = (void *) data;
struct vhci_conn *conn;
if (!(conn = conn_get_by_bdaddr(&cp->bdaddr)))
return;
connect_complete(conn);
}
static void close_connection(struct vhci_conn *conn)
{
char addr[18];
ba2str(&conn->dest, addr);
syslog(LOG_INFO, "Closing connection %s handle %d",
addr, conn->handle);
close(conn->fd);
vconn[conn->handle - 1] = NULL;
disconn_complete(conn);
free(conn);
}
static void disconnect(uint8_t *data)
{
disconnect_cp *cp = (void *) data;
struct vhci_conn *conn;
uint16_t handle;
handle = btohs(cp->handle);
if (handle > VHCI_MAX_CONN)
return;
if (!(conn = vconn[handle-1]))
return;
close_connection(conn);
}
static void create_connection(uint8_t *data)
{
create_conn_cp *cp = (void *) data;
struct vhci_link_info info;
struct vhci_conn *conn;
struct sockaddr_in sa;
int h, sk, opt;
bdaddr_t ba;
for (h = 0; h < VHCI_MAX_CONN; h++)
if (!vconn[h])
goto do_connect;
syslog(LOG_ERR, "Too many connections");
return;
do_connect:
if ((sk = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
syslog(LOG_ERR, "Can't create socket: %s (%d)",
strerror(errno), errno);
return;
}
opt = 1;
setsockopt(sk, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
baswap(&ba, &vdev.bdaddr);
sa.sin_family = AF_INET;
sa.sin_addr.s_addr = INADDR_ANY; // *(uint32_t *) &ba;
sa.sin_port = 0; // *(uint16_t *) &ba.b[4];
if (bind(sk, (struct sockaddr *) &sa, sizeof(sa))) {
syslog(LOG_ERR, "Can't bind socket: %s (%d)",
strerror(errno), errno);
close(sk);
return;
}
baswap(&ba, &cp->bdaddr);
sa.sin_family = AF_INET;
memcpy(&sa.sin_addr.s_addr, &ba, sizeof(sa.sin_addr.s_addr));
memcpy(&sa.sin_port, &ba.b[4], sizeof(sa.sin_port));
if (connect(sk, (struct sockaddr *) &sa, sizeof(sa)) < 0) {
syslog(LOG_ERR, "Can't connect: %s (%d)",
strerror(errno), errno);
close(sk);
return;
}
/* Send info */
memset(&info, 0, sizeof(info));
bacpy(&info.bdaddr, &vdev.bdaddr);
info.link_type = ACL_LINK;
info.role = 1;
write_n(sk, (void *) &info, sizeof(info));
if (!(conn = malloc(sizeof(*conn)))) {
syslog(LOG_ERR, "Can't alloc new connection: %s (%d)",
strerror(errno), errno);
close(sk);
return;
}
memcpy((uint8_t *) &ba, (uint8_t *) &sa.sin_addr, 4);
memcpy((uint8_t *) &ba.b[4], (uint8_t *) &sa.sin_port, 2);
baswap(&conn->dest, &ba);
vconn[h] = conn;
conn->handle = h + 1;
conn->fd = sk;
connect_complete(conn);
}
static void hci_link_control(uint16_t ocf, int plen, uint8_t *data)
{
const uint16_t ogf = OGF_LINK_CTL;
switch (ocf) {
case OCF_CREATE_CONN:
command_status(ogf, ocf, 0x00);
create_connection(data);
break;
case OCF_ACCEPT_CONN_REQ:
command_status(ogf, ocf, 0x00);
accept_connection(data);
break;
case OCF_DISCONNECT:
command_status(ogf, ocf, 0x00);
disconnect(data);
break;
default:
command_status(ogf, ocf, 0x01);
break;
}
}
static void hci_link_policy(uint16_t ocf, int plen, uint8_t *data)
{
const uint16_t ogf = OGF_INFO_PARAM;
switch (ocf) {
default:
command_status(ogf, ocf, 0x01);
break;
}
}
static void hci_host_control(uint16_t ocf, int plen, uint8_t *data)
{
read_scan_enable_rp se;
read_local_name_rp ln;
read_class_of_dev_rp cd;
read_inquiry_mode_rp im;
read_ext_inquiry_response_rp ir;
read_simple_pairing_mode_rp pm;
read_le_host_supported_rp hs;
uint8_t status;
const uint16_t ogf = OGF_HOST_CTL;
switch (ocf) {
case OCF_RESET:
status = 0x00;
reset_vdev();
command_complete(ogf, ocf, 1, &status);
break;
case OCF_SET_EVENT_FLT:
status = 0x00;
command_complete(ogf, ocf, 1, &status);
break;
case OCF_CHANGE_LOCAL_NAME:
status = 0x00;
memcpy(vdev.name, data, sizeof(vdev.name));
command_complete(ogf, ocf, 1, &status);
break;
case OCF_READ_LOCAL_NAME:
ln.status = 0x00;
memcpy(ln.name, vdev.name, sizeof(ln.name));
command_complete(ogf, ocf, sizeof(ln), &ln);
break;
case OCF_WRITE_CONN_ACCEPT_TIMEOUT:
case OCF_WRITE_PAGE_TIMEOUT:
status = 0x00;
command_complete(ogf, ocf, 1, &status);
break;
case OCF_READ_SCAN_ENABLE:
se.status = 0x00;
se.enable = vdev.scan_enable;
command_complete(ogf, ocf, sizeof(se), &se);
break;
case OCF_WRITE_SCAN_ENABLE:
status = 0x00;
vdev.scan_enable = scan_enable(data);
command_complete(ogf, ocf, 1, &status);
break;
case OCF_WRITE_AUTH_ENABLE:
status = 0x00;
command_complete(ogf, ocf, 1, &status);
break;
case OCF_WRITE_ENCRYPT_MODE:
status = 0x00;
command_complete(ogf, ocf, 1, &status);
break;
case OCF_READ_CLASS_OF_DEV:
cd.status = 0x00;
memcpy(cd.dev_class, vdev.dev_class, 3);
command_complete(ogf, ocf, sizeof(cd), &cd);
break;
case OCF_WRITE_CLASS_OF_DEV:
status = 0x00;
memcpy(vdev.dev_class, data, 3);
command_complete(ogf, ocf, 1, &status);
break;
case OCF_READ_INQUIRY_MODE:
im.status = 0x00;
im.mode = vdev.inq_mode;
command_complete(ogf, ocf, sizeof(im), &im);
break;
case OCF_WRITE_INQUIRY_MODE:
status = 0x00;
vdev.inq_mode = data[0];
command_complete(ogf, ocf, 1, &status);
break;
case OCF_READ_EXT_INQUIRY_RESPONSE:
ir.status = 0x00;
ir.fec = vdev.eir_fec;
memcpy(ir.data, vdev.eir_data, HCI_MAX_EIR_LENGTH);
command_complete(ogf, ocf, sizeof(ir), &ir);
break;
case OCF_WRITE_EXT_INQUIRY_RESPONSE:
status = 0x00;
vdev.eir_fec = data[0];
memcpy(vdev.eir_data, data + 1, HCI_MAX_EIR_LENGTH);
command_complete(ogf, ocf, 1, &status);
break;
case OCF_READ_SIMPLE_PAIRING_MODE:
pm.status = 0x00;
pm.mode = vdev.ssp_mode;
command_complete(ogf, ocf, sizeof(pm), &pm);
break;
case OCF_WRITE_SIMPLE_PAIRING_MODE:
status = 0x00;
vdev.ssp_mode = data[0];
command_complete(ogf, ocf, 1, &status);
break;
case OCF_READ_LE_HOST_SUPPORTED:
hs.status = 0x00;
hs.le = vdev.le_mode;
hs.simul = vdev.le_simul;
command_complete(ogf, ocf, sizeof(hs), &hs);
break;
case OCF_WRITE_LE_HOST_SUPPORTED:
status = 0x00;
vdev.le_mode = data[0];
vdev.le_simul = data[1];
command_complete(ogf, ocf, 1, &status);
break;
default:
command_status(ogf, ocf, 0x01);
break;
}
}
static void hci_info_param(uint16_t ocf, int plen, uint8_t *data)
{
read_local_version_rp lv;
read_local_features_rp lf;
read_local_ext_features_rp ef;
read_buffer_size_rp bs;
read_bd_addr_rp ba;
const uint16_t ogf = OGF_INFO_PARAM;
switch (ocf) {
case OCF_READ_LOCAL_VERSION:
lv.status = 0x00;
lv.hci_ver = 0x06;
lv.hci_rev = htobs(0x0000);
lv.lmp_ver = 0x06;
lv.manufacturer = htobs(63);
lv.lmp_subver = htobs(0x0000);
command_complete(ogf, ocf, sizeof(lv), &lv);
break;
case OCF_READ_LOCAL_FEATURES:
lf.status = 0x00;
memcpy(lf.features, vdev.features, 8);
command_complete(ogf, ocf, sizeof(lf), &lf);
break;
case OCF_READ_LOCAL_EXT_FEATURES:
ef.status = 0x00;
if (*data == 0) {
ef.page_num = 0;
ef.max_page_num = 1;
memcpy(ef.features, vdev.features, 8);
} else if (*data == 1) {
ef.page_num = 1;
ef.max_page_num = 1;
memset(ef.features, 0, 8);
ef.features[0] |= (!!vdev.ssp_mode << 0);
ef.features[0] |= (!!vdev.le_mode << 1);
ef.features[0] |= (!!vdev.le_simul << 2);
} else {
ef.page_num = *data;
ef.max_page_num = 0;
memset(ef.features, 0, 8);
}
command_complete(ogf, ocf, sizeof(ef), &ef);
break;
case OCF_READ_BUFFER_SIZE:
bs.status = 0x00;
bs.acl_mtu = htobs(VHCI_ACL_MTU);
bs.sco_mtu = 0;
bs.acl_max_pkt = htobs(VHCI_ACL_MAX_PKT);
bs.sco_max_pkt = htobs(0);
command_complete(ogf, ocf, sizeof(bs), &bs);
break;
case OCF_READ_BD_ADDR:
ba.status = 0x00;
bacpy(&ba.bdaddr, &vdev.bdaddr);
command_complete(ogf, ocf, sizeof(ba), &ba);
break;
default:
command_status(ogf, ocf, 0x01);
break;
}
}
static void hci_status_param(uint16_t ocf, int plen, uint8_t *data)
{
read_local_amp_info_rp ai;
const uint16_t ogf = OGF_STATUS_PARAM;
switch (ocf) {
case OCF_READ_LOCAL_AMP_INFO:
memset(&ai, 0, sizeof(ai));
/* BT only */
ai.amp_status = 0x01;
ai.max_pdu_size = htobl(L2CAP_DEFAULT_MTU);
ai.controller_type = HCI_AMP;
ai.max_amp_assoc_length = htobl(HCI_MAX_ACL_SIZE);
/* No flushing at all */
ai.max_flush_timeout = 0xFFFFFFFF;
ai.best_effort_flush_timeout = 0xFFFFFFFF;
command_complete(ogf, ocf, sizeof(ai), &ai);
break;
default:
command_status(ogf, ocf, 0x01);
break;
}
}
static void hci_le_control(uint16_t ocf, int plen, uint8_t *data)
{
le_read_buffer_size_rp bs;
const uint16_t ogf = OGF_LE_CTL;
switch (ocf) {
case OCF_LE_READ_BUFFER_SIZE:
bs.status = 0;
bs.pkt_len = htobs(VHCI_ACL_MTU);
bs.max_pkt = htobs(VHCI_ACL_MAX_PKT);
command_complete(ogf, ocf, sizeof(bs), &bs);
break;
default:
command_status(ogf, ocf, 0x01);
break;
}
}
static void hci_command(uint8_t *data)
{
hci_command_hdr *ch;
uint8_t *ptr = data;
uint16_t ogf, ocf;
ch = (hci_command_hdr *) ptr;
ptr += HCI_COMMAND_HDR_SIZE;
ch->opcode = btohs(ch->opcode);
ogf = cmd_opcode_ogf(ch->opcode);
ocf = cmd_opcode_ocf(ch->opcode);
switch (ogf) {
case OGF_LINK_CTL:
hci_link_control(ocf, ch->plen, ptr);
break;
case OGF_LINK_POLICY:
hci_link_policy(ocf, ch->plen, ptr);
break;
case OGF_HOST_CTL:
hci_host_control(ocf, ch->plen, ptr);
break;
case OGF_INFO_PARAM:
hci_info_param(ocf, ch->plen, ptr);
break;
case OGF_STATUS_PARAM:
hci_status_param(ocf, ch->plen, ptr);
break;
case OGF_LE_CTL:
hci_le_control(ocf, ch->plen, ptr);
break;
default:
command_status(ogf, ocf, 0x01);
break;
}
}
static void hci_acl_data(uint8_t *data)
{
hci_acl_hdr *ah = (void *) data;
struct vhci_conn *conn;
uint16_t handle;
handle = acl_handle(btohs(ah->handle));
if (handle > VHCI_MAX_CONN || !(conn = vconn[handle - 1])) {
syslog(LOG_ERR, "Bad connection handle %d", handle);
return;
}
if (write_n(conn->fd, data, btohs(ah->dlen) + HCI_ACL_HDR_SIZE) < 0) {
close_connection(conn);
return;
}
if (++vdev.acl_cnt > VHCI_ACL_MAX_PKT - 1) {
/* Send num of complete packets event */
num_completed_pkts(conn);
vdev.acl_cnt = 0;
}
}
#if 0
static void io_acl_data(void *data)
{
struct vhci_conn *conn = data;
unsigned char buf[HCI_MAX_FRAME_SIZE], *ptr;
hci_acl_hdr *ah;
uint16_t flags;
int len;
ptr = buf + 1;
if (read_n(conn->fd, ptr, HCI_ACL_HDR_SIZE) <= 0) {
close_connection(conn);
return;
}
ah = (void *) ptr;
ptr += HCI_ACL_HDR_SIZE;
len = btohs(ah->dlen);
if (read_n(conn->fd, ptr, len) <= 0) {
close_connection(conn);
return;
}
buf[0] = HCI_ACLDATA_PKT;
flags = acl_flags(btohs(ah->handle));
ah->handle = htobs(acl_handle_pack(conn->handle, flags));
len += HCI_ACL_HDR_SIZE + 1;
write_snoop(vdev.dd, HCI_ACLDATA_PKT, 1, buf, len);
if (write(vdev.dev_fd, buf, len) < 0)
syslog(LOG_ERR, "ACL data write error");
}
#endif
static void io_conn_ind(void)
{
struct vhci_link_info info;
struct vhci_conn *conn;
struct sockaddr_in sa;
socklen_t len;
int nsk, h;
len = sizeof(sa);
if ((nsk = accept(vdev.scan_fd, (struct sockaddr *) &sa, &len)) < 0)
return;
if (read_n(nsk, &info, sizeof(info)) < 0) {
syslog(LOG_ERR, "Can't read link info");
return;
}
if (!(conn = malloc(sizeof(*conn)))) {
syslog(LOG_ERR, "Can't alloc new connection");
close(nsk);
return;
}
bacpy(&conn->dest, &info.bdaddr);
for (h = 0; h < VHCI_MAX_CONN; h++)
if (!vconn[h])
goto accepted;
syslog(LOG_ERR, "Too many connections");
free(conn);
close(nsk);
return;
accepted:
vconn[h] = conn;
conn->handle = h + 1;
conn->fd = nsk;
connect_request(conn);
}
static void io_hci_data(void)
{
unsigned char buf[HCI_MAX_FRAME_SIZE], *ptr;
int type;
ssize_t len;
ptr = buf;
len = read(vdev.dev_fd, buf, sizeof(buf));
if (len < 0) {
if (errno == EAGAIN)
return;
syslog(LOG_ERR, "Read failed: %s (%d)", strerror(errno), errno);
__io_canceled = 1;
return;
}
type = *ptr++;
write_snoop(vdev.dd, type, 0, buf, len);
switch (type) {
case HCI_COMMAND_PKT:
hci_command(ptr);
break;
case HCI_ACLDATA_PKT:
hci_acl_data(ptr);
break;
default:
syslog(LOG_ERR, "Unknown packet type 0x%2.2x", type);
break;
}
}
static int getbdaddrbyname(char *str, bdaddr_t *ba)
{
int i, n, len;
len = strlen(str);
/* Check address format */
for (i = 0, n = 0; i < len; i++)
if (str[i] == ':')
n++;
if (n == 5) {
/* BD address */
str2ba(str, ba);
return 0;
}
if (n == 0) {
/* loopback port */
in_addr_t addr = INADDR_LOOPBACK;
uint16_t be16 = htons(atoi(str));
bdaddr_t b;
memcpy(&b, &addr, 4);
memcpy(&b.b[4], &be16, sizeof(be16));
baswap(ba, &b);
return 0;
}
fprintf(stderr, "Invalid address format\n");
return -1;
}
static void usage(void)
{
printf("hciemu - HCI emulator ver %s\n", VERSION);
printf("Usage: \n");
printf("\thciemu [options] port_number\n"
"Options:\n"
"\t[-d device] use specified device node\n"
"\t[-s file] create snoop file\n"
"\t[-n] do not detach\n"
"\t[-h] help, you are looking at it\n");
}
static const struct option options[] = {
{ "device", 1, 0, 'd' },
{ "bdaddr", 1, 0, 'b' },
{ "snoop", 1, 0, 's' },
{ "nodetach", 0, 0, 'n' },
{ "help", 0, 0, 'h' },
{ }
};
int main(int argc, char *argv[])
{
int exitcode = EXIT_FAILURE;
struct sigaction sa;
char *device = NULL, *snoop = NULL;
int device_fd;
struct epoll_event device_event;
int dd, opt, detach = 1;
while ((opt=getopt_long(argc, argv, "d:s:nh", options, NULL)) != EOF) {
switch(opt) {
case 'd':
device = strdup(optarg);
break;
case 's':
snoop = strdup(optarg);
break;
case 'n':
detach = 0;
break;
case 'h':
usage();
exit(0);
default:
usage();
exit(1);
}
}
argc -= optind;
argv += optind;
optind = 0;
if (argc < 1) {
usage();
exit(1);
}
if (getbdaddrbyname(argv[0], &vdev.bdaddr) < 0)
exit(1);
if (detach) {
if (daemon(0, 0)) {
perror("Can't start daemon");
exit(1);
}
}
/* Start logging to syslog and stderr */
openlog("hciemu", LOG_PID | LOG_NDELAY | LOG_PERROR, LOG_DAEMON);
syslog(LOG_INFO, "HCI emulation daemon ver %s started", VERSION);
memset(&sa, 0, sizeof(sa));
sa.sa_flags = SA_NOCLDSTOP;
sa.sa_handler = SIG_IGN;
sigaction(SIGCHLD, &sa, NULL);
sigaction(SIGPIPE, &sa, NULL);
sa.sa_handler = sig_term;
sigaction(SIGTERM, &sa, NULL);
sigaction(SIGINT, &sa, NULL);
if (!device)
device = strdup(VHCI_DEV);
/* Open and create virtual HCI device */
device_fd = open(device, O_RDWR);
if (device_fd < 0) {
syslog(LOG_ERR, "Can't open device %s: %s (%d)",
device, strerror(errno), errno);
free(device);
return exitcode;
}
free(device);
/* Create snoop file */
if (snoop) {
dd = create_snoop(snoop);
if (dd < 0)
syslog(LOG_ERR, "Can't create snoop file %s: %s (%d)",
snoop, strerror(errno), errno);
free(snoop);
} else
dd = -1;
/* Create event loop */
epoll_fd = epoll_create1(EPOLL_CLOEXEC);
if (epoll_fd < 0) {
perror("Failed to create epoll descriptor");
goto close_device;
}
reset_vdev();
vdev.dev_fd = device_fd;
vdev.dd = dd;
memset(&device_event, 0, sizeof(device_event));
device_event.events = EPOLLIN;
device_event.data.fd = device_fd;
if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, device_fd, &device_event) < 0) {
perror("Failed to setup device event watch");
goto close_device;
}
setpriority(PRIO_PROCESS, 0, -19);
/* Start event processor */
for (;;) {
struct epoll_event events[MAX_EPOLL_EVENTS];
int n, nfds;
if (__io_canceled)
break;
nfds = epoll_wait(epoll_fd, events, MAX_EPOLL_EVENTS, -1);
if (nfds < 0)
continue;
for (n = 0; n < nfds; n++) {
if (events[n].data.fd == vdev.dev_fd)
io_hci_data();
else if (events[n].data.fd == vdev.scan_fd)
io_conn_ind();
}
}
exitcode = EXIT_SUCCESS;
epoll_ctl(epoll_fd, EPOLL_CTL_DEL, device_fd, NULL);
close_device:
close(device_fd);
if (dd >= 0)
close(dd);
close(epoll_fd);
syslog(LOG_INFO, "Exit");
return exitcode;
}