bluez/android/bluetooth.c
Szymon Janc 97075679fe android: Remove dead code
This removes dead code due to memory allocation with new0 not being
able to fail.
2015-10-30 11:44:19 +01:00

5344 lines
121 KiB
C

/*
*
* BlueZ - Bluetooth protocol stack for Linux
*
* Copyright (C) 2013-2014 Intel Corporation. All rights reserved.
*
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#include <inttypes.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <glib.h>
#include "lib/bluetooth.h"
#include "lib/sdp.h"
#include "lib/mgmt.h"
#include "lib/uuid.h"
#include "src/shared/util.h"
#include "src/shared/mgmt.h"
#include "src/shared/queue.h"
#include "src/eir.h"
#include "lib/sdp.h"
#include "lib/sdp_lib.h"
#include "src/sdp-client.h"
#include "src/sdpd.h"
#include "src/log.h"
#include "hal-msg.h"
#include "ipc-common.h"
#include "ipc.h"
#include "utils.h"
#include "bluetooth.h"
#define DUT_MODE_FILE "/sys/kernel/debug/bluetooth/hci%u/dut_mode"
#define SETTINGS_FILE ANDROID_STORAGEDIR"/settings"
#define DEVICES_FILE ANDROID_STORAGEDIR"/devices"
#define CACHE_FILE ANDROID_STORAGEDIR"/cache"
#define ADAPTER_MAJOR_CLASS 0x02 /* Phone */
#define ADAPTER_MINOR_CLASS 0x03 /* Smartphone */
/* Default to DisplayYesNo */
#define DEFAULT_IO_CAPABILITY 0x01
/* Default discoverable timeout 120sec as in Android */
#define DEFAULT_DISCOVERABLE_TIMEOUT 120
#define DEVICES_CACHE_MAX 300
#define BASELEN_PROP_CHANGED (sizeof(struct hal_ev_adapter_props_changed) \
+ sizeof(struct hal_property))
#define BASELEN_REMOTE_DEV_PROP (sizeof(struct hal_ev_remote_device_props) \
+ sizeof(struct hal_property))
#define SCAN_TYPE_NONE 0
#define SCAN_TYPE_BREDR (1 << BDADDR_BREDR)
#define SCAN_TYPE_LE ((1 << BDADDR_LE_PUBLIC) | (1 << BDADDR_LE_RANDOM))
#define SCAN_TYPE_DUAL (SCAN_TYPE_BREDR | SCAN_TYPE_LE)
#define BDADDR_LE (BDADDR_LE_RANDOM | BDADDR_LE_PUBLIC)
struct device {
bdaddr_t bdaddr;
uint8_t bdaddr_type;
bdaddr_t rpa;
uint8_t rpa_type;
bool le;
bool bredr;
bool pairing;
bool bredr_paired;
bool bredr_bonded;
bool le_paired;
bool le_bonded;
bool in_white_list;
bool connected;
char *name;
char *friendly_name;
uint32_t class;
int32_t rssi;
time_t bredr_seen;
time_t le_seen;
GSList *uuids;
bool found; /* if device is found in current discovery session */
unsigned int confirm_id; /* mgtm command id if command pending */
bool valid_remote_csrk;
bool remote_csrk_auth;
uint8_t remote_csrk[16];
uint32_t remote_sign_cnt;
bool valid_local_csrk;
bool local_csrk_auth;
uint8_t local_csrk[16];
uint32_t local_sign_cnt;
uint16_t gatt_ccc;
};
struct browse_req {
bdaddr_t bdaddr;
GSList *uuids;
int search_uuid;
int reconnect_attempt;
};
static struct {
uint16_t index;
bdaddr_t bdaddr;
uint32_t dev_class;
char *name;
uint8_t max_advert_instance;
uint8_t rpa_offload_supported;
uint8_t max_irk_list_size;
uint8_t max_scan_filters_supported;
uint16_t scan_result_storage_size;
uint8_t activity_energy_info_supported;
uint32_t current_settings;
uint32_t supported_settings;
bool le_scanning;
uint8_t cur_discovery_type;
uint8_t exp_discovery_type;
uint32_t discoverable_timeout;
GSList *uuids;
} adapter = {
.index = MGMT_INDEX_NONE,
.dev_class = 0,
.name = NULL,
.max_advert_instance = 0,
.rpa_offload_supported = 0,
.max_irk_list_size = 0,
.max_scan_filters_supported = 0,
.scan_result_storage_size = 0,
.activity_energy_info_supported = 0,
.current_settings = 0,
.supported_settings = 0,
.cur_discovery_type = SCAN_TYPE_NONE,
.exp_discovery_type = SCAN_TYPE_NONE,
.discoverable_timeout = DEFAULT_DISCOVERABLE_TIMEOUT,
.uuids = NULL,
};
static const uint16_t uuid_list[] = {
L2CAP_UUID,
PNP_INFO_SVCLASS_ID,
PUBLIC_BROWSE_GROUP,
0
};
static uint16_t option_index = MGMT_INDEX_NONE;
static struct mgmt *mgmt_if = NULL;
static GSList *bonded_devices = NULL;
static GSList *cached_devices = NULL;
static bt_le_device_found gatt_device_found_cb = NULL;
static bt_le_discovery_stopped gatt_discovery_stopped_cb = NULL;
/* This list contains addresses which are asked for records */
static GSList *browse_reqs;
static struct ipc *hal_ipc = NULL;
static bool kernel_conn_control = false;
static struct queue *unpaired_cb_list = NULL;
static struct queue *paired_cb_list = NULL;
static void get_device_android_addr(struct device *dev, uint8_t *addr)
{
/*
* If RPA is set it means that IRK was received and ID address is being
* used. Android Framework is still using old RPA and it needs to be
* used in notifications.
*/
if (bacmp(&dev->rpa, BDADDR_ANY))
bdaddr2android(&dev->rpa, addr);
else
bdaddr2android(&dev->bdaddr, addr);
}
static void mgmt_debug(const char *str, void *user_data)
{
const char *prefix = user_data;
info("%s%s", prefix, str);
}
static void store_adapter_config(void)
{
GKeyFile *key_file;
gsize length = 0;
char addr[18];
char *data;
key_file = g_key_file_new();
g_key_file_load_from_file(key_file, SETTINGS_FILE, 0, NULL);
ba2str(&adapter.bdaddr, addr);
g_key_file_set_string(key_file, "General", "Address", addr);
if (adapter.name)
g_key_file_set_string(key_file, "General", "Name",
adapter.name);
g_key_file_set_integer(key_file, "General", "DiscoverableTimeout",
adapter.discoverable_timeout);
data = g_key_file_to_data(key_file, &length, NULL);
g_file_set_contents(SETTINGS_FILE, data, length, NULL);
g_free(data);
g_key_file_free(key_file);
}
static void load_adapter_config(void)
{
GError *gerr = NULL;
GKeyFile *key_file;
char *str;
key_file = g_key_file_new();
g_key_file_load_from_file(key_file, SETTINGS_FILE, 0, NULL);
str = g_key_file_get_string(key_file, "General", "Address", NULL);
if (!str) {
g_key_file_free(key_file);
return;
}
str2ba(str, &adapter.bdaddr);
g_free(str);
adapter.name = g_key_file_get_string(key_file, "General", "Name", NULL);
adapter.discoverable_timeout = g_key_file_get_integer(key_file,
"General", "DiscoverableTimeout", &gerr);
if (gerr) {
adapter.discoverable_timeout = DEFAULT_DISCOVERABLE_TIMEOUT;
g_clear_error(&gerr);
}
g_key_file_free(key_file);
}
static void store_device_info(struct device *dev, const char *path)
{
GKeyFile *key_file;
char addr[18];
gsize length = 0;
char **uuids = NULL;
char *str;
ba2str(&dev->bdaddr, addr);
key_file = g_key_file_new();
g_key_file_load_from_file(key_file, path, 0, NULL);
g_key_file_set_boolean(key_file, addr, "BREDR", dev->bredr);
if (dev->le)
g_key_file_set_integer(key_file, addr, "AddressType",
dev->bdaddr_type);
g_key_file_set_string(key_file, addr, "Name", dev->name);
if (dev->friendly_name)
g_key_file_set_string(key_file, addr, "FriendlyName",
dev->friendly_name);
else
g_key_file_remove_key(key_file, addr, "FriendlyName", NULL);
if (dev->class)
g_key_file_set_integer(key_file, addr, "Class", dev->class);
else
g_key_file_remove_key(key_file, addr, "Class", NULL);
if (dev->bredr_seen > dev->le_seen)
g_key_file_set_integer(key_file, addr, "Timestamp",
dev->bredr_seen);
else
g_key_file_set_integer(key_file, addr, "Timestamp",
dev->le_seen);
if (dev->uuids) {
GSList *l;
int i;
uuids = g_new0(char *, g_slist_length(dev->uuids) + 1);
for (i = 0, l = dev->uuids; l; l = g_slist_next(l), i++) {
int j;
uint8_t *u = l->data;
char *uuid_str = g_malloc0(33);
for (j = 0; j < 16; j++)
sprintf(uuid_str + (j * 2), "%2.2X", u[j]);
uuids[i] = uuid_str;
}
g_key_file_set_string_list(key_file, addr, "Services",
(const char **)uuids, i);
} else {
g_key_file_remove_key(key_file, addr, "Services", NULL);
}
str = g_key_file_to_data(key_file, &length, NULL);
g_file_set_contents(path, str, length, NULL);
g_free(str);
g_key_file_free(key_file);
g_strfreev(uuids);
}
static void remove_device_info(struct device *dev, const char *path)
{
GKeyFile *key_file;
gsize length = 0;
char addr[18];
char *str;
ba2str(&dev->bdaddr, addr);
key_file = g_key_file_new();
g_key_file_load_from_file(key_file, path, 0, NULL);
g_key_file_remove_group(key_file, addr, NULL);
str = g_key_file_to_data(key_file, &length, NULL);
g_file_set_contents(path, str, length, NULL);
g_free(str);
g_key_file_free(key_file);
}
static int device_match(gconstpointer a, gconstpointer b)
{
const struct device *dev = a;
const bdaddr_t *bdaddr = b;
/* Android is using RPA even if IRK was received and ID addr resolved */
if (!bacmp(&dev->rpa, bdaddr))
return 0;
return bacmp(&dev->bdaddr, bdaddr);
}
static struct device *find_device(const bdaddr_t *bdaddr)
{
GSList *l;
l = g_slist_find_custom(bonded_devices, bdaddr, device_match);
if (l)
return l->data;
l = g_slist_find_custom(cached_devices, bdaddr, device_match);
if (l)
return l->data;
return NULL;
}
static void free_device(struct device *dev)
{
if (dev->confirm_id)
mgmt_cancel(mgmt_if, dev->confirm_id);
g_free(dev->name);
g_free(dev->friendly_name);
g_slist_free_full(dev->uuids, g_free);
g_free(dev);
}
static void cache_device(struct device *new_dev)
{
struct device *dev;
GSList *l;
l = g_slist_find(cached_devices, new_dev);
if (l) {
cached_devices = g_slist_remove(cached_devices, new_dev);
goto cache;
}
if (g_slist_length(cached_devices) < DEVICES_CACHE_MAX)
goto cache;
l = g_slist_last(cached_devices);
dev = l->data;
cached_devices = g_slist_remove(cached_devices, dev);
remove_device_info(dev, CACHE_FILE);
free_device(dev);
cache:
cached_devices = g_slist_prepend(cached_devices, new_dev);
store_device_info(new_dev, CACHE_FILE);
}
static struct device *create_device(const bdaddr_t *bdaddr, uint8_t bdaddr_type)
{
struct device *dev;
char addr[18];
ba2str(bdaddr, addr);
DBG("%s", addr);
dev = g_new0(struct device, 1);
bacpy(&dev->bdaddr, bdaddr);
if (bdaddr_type == BDADDR_BREDR) {
dev->bredr = true;
dev->bredr_seen = time(NULL);
} else {
dev->le = true;
dev->bdaddr_type = bdaddr_type;
dev->le_seen = time(NULL);
}
/*
* Use address for name, will be change if one is present
* eg. in EIR or set by set_property.
*/
dev->name = g_strdup(addr);
return dev;
}
static struct device *get_device(const bdaddr_t *bdaddr, uint8_t type)
{
struct device *dev;
dev = find_device(bdaddr);
if (dev)
return dev;
dev = create_device(bdaddr, type);
cache_device(dev);
return dev;
}
static struct device *find_device_android(const uint8_t *addr)
{
bdaddr_t bdaddr;
android2bdaddr(addr, &bdaddr);
return find_device(&bdaddr);
}
static struct device *get_device_android(const uint8_t *addr)
{
bdaddr_t bdaddr;
android2bdaddr(addr, &bdaddr);
return get_device(&bdaddr, BDADDR_BREDR);
}
static void send_adapter_property(uint8_t type, uint16_t len, const void *val)
{
uint8_t buf[BASELEN_PROP_CHANGED + len];
struct hal_ev_adapter_props_changed *ev = (void *) buf;
ev->status = HAL_STATUS_SUCCESS;
ev->num_props = 1;
ev->props[0].type = type;
ev->props[0].len = len;
memcpy(ev->props[0].val, val, len);
ipc_send_notif(hal_ipc, HAL_SERVICE_ID_BLUETOOTH,
HAL_EV_ADAPTER_PROPS_CHANGED, sizeof(buf), buf);
}
static void adapter_name_changed(const uint8_t *name)
{
/* Android expects string value without NULL terminator */
send_adapter_property(HAL_PROP_ADAPTER_NAME,
strlen((const char *) name), name);
}
static void adapter_set_name(const uint8_t *name)
{
if (!g_strcmp0(adapter.name, (const char *) name))
return;
DBG("%s", name);
g_free(adapter.name);
adapter.name = g_strdup((const char *) name);
store_adapter_config();
adapter_name_changed(name);
}
static void mgmt_local_name_changed_event(uint16_t index, uint16_t length,
const void *param, void *user_data)
{
const struct mgmt_cp_set_local_name *rp = param;
if (length < sizeof(*rp)) {
error("Wrong size of local name changed parameters");
return;
}
adapter_set_name(rp->name);
/* TODO Update services if needed */
}
static void powered_changed(void)
{
struct hal_ev_adapter_state_changed ev;
ev.state = (adapter.current_settings & MGMT_SETTING_POWERED) ?
HAL_POWER_ON : HAL_POWER_OFF;
DBG("%u", ev.state);
ipc_send_notif(hal_ipc, HAL_SERVICE_ID_BLUETOOTH,
HAL_EV_ADAPTER_STATE_CHANGED, sizeof(ev), &ev);
}
static uint8_t settings2scan_mode(void)
{
bool connectable, discoverable;
connectable = adapter.current_settings & MGMT_SETTING_CONNECTABLE;
discoverable = adapter.current_settings & MGMT_SETTING_DISCOVERABLE;
if (connectable && discoverable)
return HAL_ADAPTER_SCAN_MODE_CONN_DISC;
if (connectable)
return HAL_ADAPTER_SCAN_MODE_CONN;
return HAL_ADAPTER_SCAN_MODE_NONE;
}
static void scan_mode_changed(void)
{
uint8_t mode;
mode = settings2scan_mode();
DBG("mode %u", mode);
send_adapter_property(HAL_PROP_ADAPTER_SCAN_MODE, sizeof(mode), &mode);
}
static void adapter_class_changed(void)
{
send_adapter_property(HAL_PROP_ADAPTER_CLASS, sizeof(adapter.dev_class),
&adapter.dev_class);
}
static void settings_changed(uint32_t settings)
{
uint32_t changed_mask;
uint32_t scan_mode_mask;
changed_mask = adapter.current_settings ^ settings;
adapter.current_settings = settings;
DBG("0x%08x", changed_mask);
if (changed_mask & MGMT_SETTING_POWERED)
powered_changed();
scan_mode_mask = MGMT_SETTING_CONNECTABLE |
MGMT_SETTING_DISCOVERABLE;
/*
* Only when powered, the connectable and discoverable
* state changes should be communicated.
*/
if (adapter.current_settings & MGMT_SETTING_POWERED)
if (changed_mask & scan_mode_mask)
scan_mode_changed();
}
static void new_settings_callback(uint16_t index, uint16_t length,
const void *param, void *user_data)
{
uint32_t settings;
if (length < sizeof(settings)) {
error("Wrong size of new settings parameters");
return;
}
settings = get_le32(param);
DBG("settings: 0x%8.8x -> 0x%8.8x", adapter.current_settings,
settings);
if (settings == adapter.current_settings)
return;
settings_changed(settings);
}
static void mgmt_dev_class_changed_event(uint16_t index, uint16_t length,
const void *param, void *user_data)
{
const struct mgmt_cod *rp = param;
uint32_t dev_class;
if (length < sizeof(*rp)) {
error("Wrong size of class of device changed parameters");
return;
}
dev_class = rp->val[0] | (rp->val[1] << 8) | (rp->val[2] << 16);
if (dev_class == adapter.dev_class)
return;
DBG("Class: 0x%06x", dev_class);
adapter.dev_class = dev_class;
adapter_class_changed();
/* TODO: Gatt attrib set*/
}
void bt_store_gatt_ccc(const bdaddr_t *dst, uint16_t value)
{
struct device *dev;
GKeyFile *key_file;
gsize length = 0;
char addr[18];
char *data;
dev = find_device(dst);
if (!dev)
return;
key_file = g_key_file_new();
if (!g_key_file_load_from_file(key_file, DEVICES_FILE, 0, NULL)) {
g_key_file_free(key_file);
return;
}
ba2str(&dev->bdaddr, addr);
DBG("%s Gatt CCC %d", addr, value);
g_key_file_set_integer(key_file, addr, "GattCCC", value);
data = g_key_file_to_data(key_file, &length, NULL);
g_file_set_contents(DEVICES_FILE, data, length, NULL);
g_free(data);
g_key_file_free(key_file);
dev->gatt_ccc = value;
}
uint16_t bt_get_gatt_ccc(const bdaddr_t *addr)
{
struct device *dev;
dev = find_device(addr);
if (!dev)
return 0;
return dev->gatt_ccc;
}
static void store_link_key(const bdaddr_t *dst, const uint8_t *key,
uint8_t type, uint8_t pin_length)
{
GKeyFile *key_file;
char key_str[33];
gsize length = 0;
char addr[18];
char *data;
int i;
key_file = g_key_file_new();
if (!g_key_file_load_from_file(key_file, DEVICES_FILE, 0, NULL)) {
g_key_file_free(key_file);
return;
}
ba2str(dst, addr);
DBG("%s type %u pin_len %u", addr, type, pin_length);
for (i = 0; i < 16; i++)
sprintf(key_str + (i * 2), "%2.2X", key[i]);
g_key_file_set_string(key_file, addr, "LinkKey", key_str);
g_key_file_set_integer(key_file, addr, "LinkKeyType", type);
g_key_file_set_integer(key_file, addr, "LinkKeyPinLength", pin_length);
data = g_key_file_to_data(key_file, &length, NULL);
g_file_set_contents(DEVICES_FILE, data, length, NULL);
g_free(data);
g_key_file_free(key_file);
}
static void send_bond_state_change(struct device *dev, uint8_t status,
uint8_t state)
{
struct hal_ev_bond_state_changed ev;
ev.status = status;
ev.state = state;
get_device_android_addr(dev, ev.bdaddr);
ipc_send_notif(hal_ipc, HAL_SERVICE_ID_BLUETOOTH,
HAL_EV_BOND_STATE_CHANGED, sizeof(ev), &ev);
}
static void update_bredr_state(struct device *dev, bool pairing, bool paired,
bool bonded)
{
if (pairing == dev->pairing && paired == dev->bredr_paired &&
bonded == dev->bredr_bonded)
return;
/* avoid unpairing device on incoming pairing request */
if (pairing && dev->bredr_paired)
goto done;
/* avoid unpairing device if pairing failed */
if (!pairing && !paired && dev->pairing && dev->bredr_paired)
goto done;
if (paired && !dev->le_paired && !dev->bredr_paired) {
cached_devices = g_slist_remove(cached_devices, dev);
bonded_devices = g_slist_prepend(bonded_devices, dev);
remove_device_info(dev, CACHE_FILE);
store_device_info(dev, DEVICES_FILE);
} else if (!paired && !dev->le_paired) {
bonded_devices = g_slist_remove(bonded_devices, dev);
remove_device_info(dev, DEVICES_FILE);
cache_device(dev);
}
dev->bredr_paired = paired;
if (dev->bredr_paired)
dev->bredr_bonded = dev->bredr_bonded || bonded;
else
dev->bredr_bonded = false;
done:
dev->pairing = pairing;
}
static void update_le_state(struct device *dev, bool pairing, bool paired,
bool bonded)
{
if (pairing == dev->pairing && paired == dev->le_paired &&
bonded == dev->le_bonded)
return;
/* avoid unpairing device on incoming pairing request */
if (pairing && dev->le_paired)
goto done;
/* avoid unpairing device if pairing failed */
if (!pairing && !paired && dev->pairing && dev->le_paired)
goto done;
if (paired && !dev->bredr_paired && !dev->le_paired) {
cached_devices = g_slist_remove(cached_devices, dev);
bonded_devices = g_slist_prepend(bonded_devices, dev);
remove_device_info(dev, CACHE_FILE);
store_device_info(dev, DEVICES_FILE);
} else if (!paired && !dev->bredr_paired) {
bonded_devices = g_slist_remove(bonded_devices, dev);
remove_device_info(dev, DEVICES_FILE);
dev->valid_local_csrk = false;
dev->valid_remote_csrk = false;
dev->local_sign_cnt = 0;
dev->remote_sign_cnt = 0;
memset(dev->local_csrk, 0, sizeof(dev->local_csrk));
memset(dev->remote_csrk, 0, sizeof(dev->remote_csrk));
cache_device(dev);
}
dev->le_paired = paired;
if (dev->le_paired)
dev->le_bonded = dev->le_bonded || bonded;
else
dev->le_bonded = false;
done:
dev->pairing = pairing;
}
static uint8_t device_bond_state(struct device *dev)
{
if (dev->pairing)
return HAL_BOND_STATE_BONDING;
/*
* We are checking for paired here instead of bonded as HAL API is
* using BOND state also if there was no bonding pairing.
*/
if (dev->bredr_paired || dev->le_paired)
return HAL_BOND_STATE_BONDED;
return HAL_BOND_STATE_NONE;
}
static void update_bond_state(struct device *dev, uint8_t status,
uint8_t old_bond, uint8_t new_bond)
{
if (old_bond == new_bond)
return;
/*
* When internal bond state changes from bond to non-bond or other way,
* BfA needs to send bonding state to Android in the middle. Otherwise
* Android will not handle it correctly
*/
if ((old_bond == HAL_BOND_STATE_NONE &&
new_bond == HAL_BOND_STATE_BONDED) ||
(old_bond == HAL_BOND_STATE_BONDED &&
new_bond == HAL_BOND_STATE_NONE))
send_bond_state_change(dev, HAL_STATUS_SUCCESS,
HAL_BOND_STATE_BONDING);
send_bond_state_change(dev, status, new_bond);
}
static void send_paired_notification(void *data, void *user_data)
{
bt_paired_device_cb cb = data;
struct device *dev = user_data;
cb(&dev->bdaddr);
}
static void update_device_state(struct device *dev, uint8_t addr_type,
uint8_t status, bool pairing, bool paired,
bool bonded)
{
uint8_t old_bond, new_bond;
old_bond = device_bond_state(dev);
if (addr_type == BDADDR_BREDR)
update_bredr_state(dev, pairing, paired, bonded);
else
update_le_state(dev, pairing, paired, bonded);
new_bond = device_bond_state(dev);
update_bond_state(dev, status, old_bond, new_bond);
}
static void send_device_property(struct device *dev, uint8_t type,
uint16_t len, const void *val)
{
uint8_t buf[BASELEN_REMOTE_DEV_PROP + len];
struct hal_ev_remote_device_props *ev = (void *) buf;
ev->status = HAL_STATUS_SUCCESS;
get_device_android_addr(dev, ev->bdaddr);
ev->num_props = 1;
ev->props[0].type = type;
ev->props[0].len = len;
memcpy(ev->props[0].val, val, len);
ipc_send_notif(hal_ipc, HAL_SERVICE_ID_BLUETOOTH,
HAL_EV_REMOTE_DEVICE_PROPS, sizeof(buf), buf);
}
static void send_device_uuids_notif(struct device *dev)
{
uint8_t buf[sizeof(uint128_t) * g_slist_length(dev->uuids)];
uint8_t *ptr = buf;
GSList *l;
for (l = dev->uuids; l; l = g_slist_next(l)) {
memcpy(ptr, l->data, sizeof(uint128_t));
ptr += sizeof(uint128_t);
}
send_device_property(dev, HAL_PROP_DEVICE_UUIDS, sizeof(buf), buf);
}
static void set_device_uuids(struct device *dev, GSList *uuids)
{
g_slist_free_full(dev->uuids, g_free);
dev->uuids = uuids;
if (dev->le_paired || dev->bredr_paired)
store_device_info(dev, DEVICES_FILE);
else
store_device_info(dev, CACHE_FILE);
send_device_uuids_notif(dev);
}
static void browse_req_free(struct browse_req *req)
{
g_slist_free_full(req->uuids, g_free);
g_free(req);
}
static int uuid_128_cmp(gconstpointer a, gconstpointer b)
{
return memcmp(a, b, sizeof(uint128_t));
}
static void update_records(struct browse_req *req, sdp_list_t *recs)
{
for (; recs; recs = recs->next) {
sdp_record_t *rec = (sdp_record_t *) recs->data;
sdp_list_t *svcclass = NULL;
uuid_t uuid128;
uuid_t *tmp;
uint8_t *new_uuid;
if (!rec)
break;
if (sdp_get_service_classes(rec, &svcclass) < 0)
continue;
if (!svcclass)
continue;
tmp = svcclass->data;
switch (tmp->type) {
case SDP_UUID16:
sdp_uuid16_to_uuid128(&uuid128, tmp);
break;
case SDP_UUID32:
sdp_uuid32_to_uuid128(&uuid128, tmp);
break;
case SDP_UUID128:
memcpy(&uuid128, tmp, sizeof(uuid_t));
break;
default:
sdp_list_free(svcclass, free);
continue;
}
new_uuid = g_malloc(16);/* size of 128 bit uuid */
memcpy(new_uuid, &uuid128.value.uuid128,
sizeof(uuid128.value.uuid128));
/* Check if uuid is already added */
if (g_slist_find_custom(req->uuids, new_uuid, uuid_128_cmp))
g_free(new_uuid);
else
req->uuids = g_slist_append(req->uuids, new_uuid);
sdp_list_free(svcclass, free);
}
}
static void browse_cb(sdp_list_t *recs, int err, gpointer user_data)
{
struct browse_req *req = user_data;
struct device *dev;
uuid_t uuid;
/*
* If we have a valid response and req->search_uuid == 2, then L2CAP
* UUID & PNP searching was successful -- we are done
*/
if (err < 0 || req->search_uuid == 2) {
if (err == -ECONNRESET && req->reconnect_attempt < 1) {
req->search_uuid--;
req->reconnect_attempt++;
} else {
goto done;
}
}
update_records(req, recs);
/* Search for mandatory uuids */
if (uuid_list[req->search_uuid]) {
sdp_uuid16_create(&uuid, uuid_list[req->search_uuid++]);
bt_search_service(&adapter.bdaddr, &req->bdaddr, &uuid,
browse_cb, user_data, NULL, 0);
return;
}
done:
dev = find_device(&req->bdaddr);
if (dev) {
set_device_uuids(dev, req->uuids);
req->uuids = NULL;
}
browse_reqs = g_slist_remove(browse_reqs, req);
browse_req_free(req);
}
static int req_cmp(gconstpointer a, gconstpointer b)
{
const struct browse_req *req = a;
const bdaddr_t *bdaddr = b;
return bacmp(&req->bdaddr, bdaddr);
}
static uint8_t browse_remote_sdp(const bdaddr_t *addr)
{
struct browse_req *req;
uuid_t uuid;
if (g_slist_find_custom(browse_reqs, addr, req_cmp))
return HAL_STATUS_SUCCESS;
req = g_new0(struct browse_req, 1);
bacpy(&req->bdaddr, addr);
sdp_uuid16_create(&uuid, uuid_list[req->search_uuid++]);
if (bt_search_service(&adapter.bdaddr,
&req->bdaddr, &uuid, browse_cb, req, NULL , 0) < 0) {
browse_req_free(req);
return HAL_STATUS_FAILED;
}
browse_reqs = g_slist_append(browse_reqs, req);
return HAL_STATUS_SUCCESS;
}
static void send_remote_sdp_rec_notify(bt_uuid_t *uuid, int channel,
char *name, uint8_t name_len,
uint8_t status, bdaddr_t *bdaddr)
{
struct hal_prop_device_service_rec *prop;
uint8_t buf[BASELEN_REMOTE_DEV_PROP + name_len + sizeof(*prop)];
struct hal_ev_remote_device_props *ev = (void *) buf;
size_t prop_len = sizeof(*prop) + name_len;
memset(buf, 0, sizeof(buf));
if (uuid && status == HAL_STATUS_SUCCESS) {
prop = (void *) &ev->props[0].val;
prop->name_len = name_len;
prop->channel = (uint16_t)channel;
memcpy(prop->name, name, name_len);
memcpy(prop->uuid, &uuid->value.u128, sizeof(prop->uuid));
}
ev->num_props = 1;
ev->status = status;
ev->props[0].len = prop_len;
bdaddr2android(bdaddr, ev->bdaddr);
ev->props[0].type = HAL_PROP_DEVICE_SERVICE_REC;
ipc_send_notif(hal_ipc, HAL_SERVICE_ID_BLUETOOTH,
HAL_EV_REMOTE_DEVICE_PROPS,
sizeof(buf), buf);
}
static void find_remote_sdp_rec_cb(sdp_list_t *recs, int err,
gpointer user_data)
{
bdaddr_t *addr = user_data;
uint8_t name_len;
uint8_t status;
char name_buf[256];
int channel;
bt_uuid_t uuid;
uuid_t uuid128_sdp;
sdp_list_t *protos;
sdp_record_t *sdp_rec;
if (err < 0) {
error("error while search remote sdp records");
status = HAL_STATUS_FAILED;
send_remote_sdp_rec_notify(NULL, 0, NULL, 0, status, addr);
goto done;
}
if (!recs) {
info("No service records found on remote");
status = HAL_STATUS_SUCCESS;
send_remote_sdp_rec_notify(NULL, 0, NULL, 0, status, addr);
goto done;
}
for ( ; recs; recs = recs->next) {
sdp_rec = recs->data;
switch (sdp_rec->svclass.type) {
case SDP_UUID16:
sdp_uuid16_to_uuid128(&uuid128_sdp,
&sdp_rec->svclass);
break;
case SDP_UUID32:
sdp_uuid32_to_uuid128(&uuid128_sdp,
&sdp_rec->svclass);
break;
case SDP_UUID128:
break;
default:
error("wrong sdp uuid type");
goto done;
}
if (!sdp_get_access_protos(sdp_rec, &protos)) {
channel = sdp_get_proto_port(protos, RFCOMM_UUID);
sdp_list_foreach(protos,
(sdp_list_func_t) sdp_list_free,
NULL);
sdp_list_free(protos, NULL);
} else
channel = -1;
if (channel < 0) {
error("can't get channel for sdp record");
channel = 0;
}
if (!sdp_get_service_name(sdp_rec, name_buf, sizeof(name_buf)))
name_len = strlen(name_buf);
else
name_len = 0;
uuid.type = BT_UUID128;
memcpy(&uuid.value.u128, uuid128_sdp.value.uuid128.data,
sizeof(uuid.value.u128));
status = HAL_STATUS_SUCCESS;
send_remote_sdp_rec_notify(&uuid, channel, name_buf, name_len,
status, addr);
}
done:
g_free(addr);
}
static uint8_t find_remote_sdp_rec(const bdaddr_t *addr,
const uint8_t *find_uuid)
{
bdaddr_t *bdaddr;
uuid_t uuid;
/* from android we always get full 128bit length uuid */
sdp_uuid128_create(&uuid, find_uuid);
bdaddr = g_new(bdaddr_t, 1);
if (!bdaddr)
return HAL_STATUS_NOMEM;
memcpy(bdaddr, addr, sizeof(*bdaddr));
if (bt_search_service(&adapter.bdaddr, addr, &uuid,
find_remote_sdp_rec_cb, bdaddr, NULL, 0) < 0) {
g_free(bdaddr);
return HAL_STATUS_FAILED;
}
return HAL_STATUS_SUCCESS;
}
static void new_link_key_callback(uint16_t index, uint16_t length,
const void *param, void *user_data)
{
const struct mgmt_ev_new_link_key *ev = param;
const struct mgmt_addr_info *addr = &ev->key.addr;
struct device *dev;
char dst[18];
if (length < sizeof(*ev)) {
error("Too small new link key event");
return;
}
ba2str(&addr->bdaddr, dst);
DBG("new key for %s type %u pin_len %u",
dst, ev->key.type, ev->key.pin_len);
if (ev->key.pin_len > 16) {
error("Invalid PIN length (%u) in new_key event",
ev->key.pin_len);
return;
}
dev = get_device(&ev->key.addr.bdaddr, ev->key.addr.type);
if (!dev)
return;
update_device_state(dev, ev->key.addr.type, HAL_STATUS_SUCCESS, false,
true, !!ev->store_hint);
if (ev->store_hint) {
const struct mgmt_link_key_info *key = &ev->key;
store_link_key(&addr->bdaddr, key->val, key->type,
key->pin_len);
}
browse_remote_sdp(&addr->bdaddr);
}
static uint8_t get_device_name(struct device *dev)
{
send_device_property(dev, HAL_PROP_DEVICE_NAME,
strlen(dev->name), dev->name);
return HAL_STATUS_SUCCESS;
}
static void pin_code_request_callback(uint16_t index, uint16_t length,
const void *param, void *user_data)
{
const struct mgmt_ev_pin_code_request *ev = param;
struct hal_ev_pin_request hal_ev;
struct device *dev;
char dst[18];
if (length < sizeof(*ev)) {
error("Too small PIN code request event");
return;
}
ba2str(&ev->addr.bdaddr, dst);
dev = get_device(&ev->addr.bdaddr, BDADDR_BREDR);
/*
* Workaround for Android Bluetooth.apk issue: send remote
* device property
*/
get_device_name(dev);
update_device_state(dev, ev->addr.type, HAL_STATUS_SUCCESS, true,
false, false);
DBG("%s type %u secure %u", dst, ev->addr.type, ev->secure);
/* Name already sent in remote device prop */
memset(&hal_ev, 0, sizeof(hal_ev));
get_device_android_addr(dev, hal_ev.bdaddr);
hal_ev.class_of_dev = dev->class;
ipc_send_notif(hal_ipc, HAL_SERVICE_ID_BLUETOOTH, HAL_EV_PIN_REQUEST,
sizeof(hal_ev), &hal_ev);
}
static void send_ssp_request(struct device *dev, uint8_t variant,
uint32_t passkey)
{
struct hal_ev_ssp_request ev;
memset(&ev, 0, sizeof(ev));
get_device_android_addr(dev, ev.bdaddr);
memcpy(ev.name, dev->name, strlen(dev->name));
ev.class_of_dev = dev->class;
ev.pairing_variant = variant;
ev.passkey = passkey;
ipc_send_notif(hal_ipc, HAL_SERVICE_ID_BLUETOOTH, HAL_EV_SSP_REQUEST,
sizeof(ev), &ev);
}
static void user_confirm_request_callback(uint16_t index, uint16_t length,
const void *param, void *user_data)
{
const struct mgmt_ev_user_confirm_request *ev = param;
struct device *dev;
char dst[18];
if (length < sizeof(*ev)) {
error("Too small user confirm request event");
return;
}
ba2str(&ev->addr.bdaddr, dst);
DBG("%s confirm_hint %u", dst, ev->confirm_hint);
dev = get_device(&ev->addr.bdaddr, ev->addr.type);
if (!dev)
return;
update_device_state(dev, ev->addr.type, HAL_STATUS_SUCCESS, true,
false, false);
if (ev->confirm_hint)
send_ssp_request(dev, HAL_SSP_VARIANT_CONSENT, 0);
else
send_ssp_request(dev, HAL_SSP_VARIANT_CONFIRM, ev->value);
}
static void user_passkey_request_callback(uint16_t index, uint16_t length,
const void *param, void *user_data)
{
const struct mgmt_ev_user_passkey_request *ev = param;
struct device *dev;
char dst[18];
if (length < sizeof(*ev)) {
error("Too small passkey request event");
return;
}
ba2str(&ev->addr.bdaddr, dst);
DBG("%s", dst);
dev = get_device(&ev->addr.bdaddr, ev->addr.type);
if (!dev)
return;
update_device_state(dev, ev->addr.type, HAL_STATUS_SUCCESS, true,
false, false);
send_ssp_request(dev, HAL_SSP_VARIANT_ENTRY, 0);
}
static void user_passkey_notify_callback(uint16_t index, uint16_t length,
const void *param,
void *user_data)
{
const struct mgmt_ev_passkey_notify *ev = param;
struct device *dev;
char dst[18];
if (length < sizeof(*ev)) {
error("Too small passkey notify event");
return;
}
ba2str(&ev->addr.bdaddr, dst);
DBG("%s entered %u", dst, ev->entered);
/* HAL seems to not support entered characters */
if (ev->entered)
return;
dev = find_device(&ev->addr.bdaddr);
if (!dev)
return;
update_device_state(dev, ev->addr.type, HAL_STATUS_SUCCESS, true,
false, false);
send_ssp_request(dev, HAL_SSP_VARIANT_NOTIF, ev->passkey);
}
static void clear_device_found(gpointer data, gpointer user_data)
{
struct device *dev = data;
dev->found = false;
}
static uint8_t get_supported_discovery_type(void)
{
uint8_t type = SCAN_TYPE_NONE;
if (adapter.current_settings & MGMT_SETTING_BREDR)
type |= SCAN_TYPE_BREDR;
if (adapter.current_settings & MGMT_SETTING_LE)
type |= SCAN_TYPE_LE;
return type;
}
static bool start_discovery(uint8_t type)
{
struct mgmt_cp_start_discovery cp;
cp.type = get_supported_discovery_type() & type;
DBG("type=0x%x", cp.type);
if (cp.type == SCAN_TYPE_NONE)
return false;
if (mgmt_send(mgmt_if, MGMT_OP_START_DISCOVERY, adapter.index,
sizeof(cp), &cp, NULL, NULL, NULL) > 0)
return true;
error("Failed to start discovery");
return false;
}
/*
* Send discovery state change event only if it is related to dual type
* discovery session (triggered by start/cancel discovery commands)
*/
static void check_discovery_state(uint8_t new_type, uint8_t old_type)
{
struct hal_ev_discovery_state_changed ev;
DBG("%u %u", new_type, old_type);
if (new_type == get_supported_discovery_type()) {
g_slist_foreach(bonded_devices, clear_device_found, NULL);
g_slist_foreach(cached_devices, clear_device_found, NULL);
ev.state = HAL_DISCOVERY_STATE_STARTED;
goto done;
}
if (old_type != get_supported_discovery_type())
return;
ev.state = HAL_DISCOVERY_STATE_STOPPED;
done:
ipc_send_notif(hal_ipc, HAL_SERVICE_ID_BLUETOOTH,
HAL_EV_DISCOVERY_STATE_CHANGED, sizeof(ev), &ev);
}
static void mgmt_discovering_event(uint16_t index, uint16_t length,
const void *param, void *user_data)
{
const struct mgmt_ev_discovering *ev = param;
uint8_t type;
if (length < sizeof(*ev)) {
error("Too small discovering event");
return;
}
DBG("type %u discovering %u", ev->type, ev->discovering);
if (!!adapter.cur_discovery_type == !!ev->discovering)
return;
type = ev->discovering ? ev->type : SCAN_TYPE_NONE;
check_discovery_state(type, adapter.cur_discovery_type);
adapter.cur_discovery_type = type;
if (ev->discovering) {
adapter.exp_discovery_type = adapter.le_scanning ?
SCAN_TYPE_LE : SCAN_TYPE_NONE;
return;
}
/* One shot notification about discovery stopped */
if (gatt_discovery_stopped_cb) {
gatt_discovery_stopped_cb();
gatt_discovery_stopped_cb = NULL;
}
type = adapter.exp_discovery_type;
adapter.exp_discovery_type = adapter.le_scanning ? SCAN_TYPE_LE :
SCAN_TYPE_NONE;
if (type != SCAN_TYPE_NONE)
start_discovery(type);
}
static void confirm_device_name_cb(uint8_t status, uint16_t length,
const void *param, void *user_data)
{
const struct mgmt_rp_confirm_name *rp = param;
struct device *dev;
DBG("Confirm name status: %s (0x%02x)", mgmt_errstr(status), status);
if (length < sizeof(*rp)) {
error("Wrong size of confirm name response");
return;
}
dev = find_device(&rp->addr.bdaddr);
if (!dev)
return;
dev->confirm_id = 0;
}
static unsigned int confirm_device_name(const bdaddr_t *addr, uint8_t addr_type,
bool resolve_name)
{
struct mgmt_cp_confirm_name cp;
unsigned int res;
memset(&cp, 0, sizeof(cp));
bacpy(&cp.addr.bdaddr, addr);
cp.addr.type = addr_type;
if (!resolve_name)
cp.name_known = 1;
res = mgmt_send(mgmt_if, MGMT_OP_CONFIRM_NAME, adapter.index,
sizeof(cp), &cp, confirm_device_name_cb,
NULL, NULL);
if (!res)
error("Failed to send confirm name request");
return res;
}
static int fill_hal_prop(void *buf, uint8_t type, uint16_t len,
const void *val)
{
struct hal_property *prop = buf;
prop->type = type;
prop->len = len;
if (len)
memcpy(prop->val, val, len);
return sizeof(*prop) + len;
}
static uint8_t get_device_android_type(struct device *dev)
{
if (dev->bredr && dev->le)
return HAL_TYPE_DUAL;
if (dev->le)
return HAL_TYPE_LE;
return HAL_TYPE_BREDR;
}
uint8_t bt_get_device_android_type(const bdaddr_t *addr)
{
struct device *dev;
dev = get_device(addr, BDADDR_BREDR);
return get_device_android_type(dev);
}
bool bt_is_device_le(const bdaddr_t *addr)
{
struct device *dev;
dev = find_device(addr);
if (!dev)
return false;
return dev->le;
}
const bdaddr_t *bt_get_id_addr(const bdaddr_t *addr, uint8_t *type)
{
struct device *dev;
dev = find_device(addr);
if (!dev)
return NULL;
if (type)
*type = dev->bdaddr_type;
return &dev->bdaddr;
}
const char *bt_get_adapter_name(void)
{
return adapter.name;
}
bool bt_device_is_bonded(const bdaddr_t *bdaddr)
{
if (g_slist_find_custom(bonded_devices, bdaddr, device_match))
return true;
return false;
}
bool bt_device_set_uuids(const bdaddr_t *addr, GSList *uuids)
{
struct device *dev;
dev = find_device(addr);
if (!dev)
return false;
set_device_uuids(dev, uuids);
return true;
}
bool bt_kernel_conn_control(void)
{
return kernel_conn_control;
}
bool bt_auto_connect_add(const bdaddr_t *addr)
{
struct mgmt_cp_add_device cp;
struct device *dev;
if (!kernel_conn_control)
return false;
dev = find_device(addr);
if (!dev)
return false;
if (dev->bdaddr_type == BDADDR_BREDR) {
DBG("auto-connection feature is not available for BR/EDR");
return false;
}
if (dev->in_white_list) {
DBG("Device already in white list");
return true;
}
memset(&cp, 0, sizeof(cp));
bacpy(&cp.addr.bdaddr, addr);
cp.addr.type = dev->bdaddr_type;
cp.action = 0x02;
if (mgmt_send(mgmt_if, MGMT_OP_ADD_DEVICE, adapter.index, sizeof(cp),
&cp, NULL, NULL, NULL) > 0) {
dev->in_white_list = true;
return true;
}
error("Failed to add device");
return false;
}
void bt_auto_connect_remove(const bdaddr_t *addr)
{
struct mgmt_cp_remove_device cp;
struct device *dev;
if (!kernel_conn_control)
return;
dev = find_device(addr);
if (!dev)
return;
if (dev->bdaddr_type == BDADDR_BREDR) {
DBG("auto-connection feature is not available for BR/EDR");
return;
}
if (!dev->in_white_list) {
DBG("Device already removed from white list");
return;
}
memset(&cp, 0, sizeof(cp));
bacpy(&cp.addr.bdaddr, addr);
cp.addr.type = dev->bdaddr_type;
if (mgmt_send(mgmt_if, MGMT_OP_REMOVE_DEVICE, adapter.index,
sizeof(cp), &cp, NULL, NULL, NULL) > 0) {
dev->in_white_list = false;
return;
}
error("Failed to remove device");
}
static bool match_by_value(const void *data, const void *user_data)
{
return data == user_data;
}
bool bt_unpaired_register(bt_unpaired_device_cb cb)
{
if (queue_find(unpaired_cb_list, match_by_value, cb))
return false;
return queue_push_head(unpaired_cb_list, cb);
}
void bt_unpaired_unregister(bt_unpaired_device_cb cb)
{
queue_remove(unpaired_cb_list, cb);
}
bool bt_paired_register(bt_paired_device_cb cb)
{
if (queue_find(paired_cb_list, match_by_value, cb))
return false;
return queue_push_head(paired_cb_list, cb);
}
void bt_paired_unregister(bt_paired_device_cb cb)
{
queue_remove(paired_cb_list, cb);
}
bool bt_is_pairing(const bdaddr_t *addr)
{
struct device *dev;
dev = find_device(addr);
if (!dev)
return false;
return dev->pairing;
}
static bool rssi_above_threshold(int old, int new)
{
/* only 8 dBm or more */
return abs(old - new) >= 8;
}
static void update_new_device(struct device *dev, int8_t rssi,
const struct eir_data *eir)
{
uint8_t buf[IPC_MTU];
struct hal_ev_device_found *ev = (void *) buf;
uint8_t android_bdaddr[6];
uint8_t android_type;
size_t size;
memset(buf, 0, sizeof(buf));
if (adapter.cur_discovery_type)
dev->found = true;
size = sizeof(*ev);
get_device_android_addr(dev, android_bdaddr);
size += fill_hal_prop(buf + size, HAL_PROP_DEVICE_ADDR,
sizeof(android_bdaddr), android_bdaddr);
ev->num_props++;
android_type = get_device_android_type(dev);
size += fill_hal_prop(buf + size, HAL_PROP_DEVICE_TYPE,
sizeof(android_type), &android_type);
ev->num_props++;
if (eir->class)
dev->class = eir->class;
if (dev->class) {
size += fill_hal_prop(buf + size, HAL_PROP_DEVICE_CLASS,
sizeof(dev->class), &dev->class);
ev->num_props++;
}
if (rssi && rssi_above_threshold(dev->rssi, rssi))
dev->rssi = rssi;
if (dev->rssi) {
size += fill_hal_prop(buf + size, HAL_PROP_DEVICE_RSSI,
sizeof(dev->rssi), &dev->rssi);
ev->num_props++;
}
if (eir->name && strlen(eir->name)) {
g_free(dev->name);
dev->name = g_strdup(eir->name);
}
if (dev->name) {
size += fill_hal_prop(buf + size, HAL_PROP_DEVICE_NAME,
strlen(dev->name), dev->name);
ev->num_props++;
/* when updating name also send stored friendly name */
if (dev->friendly_name) {
size += fill_hal_prop(buf + size,
HAL_PROP_DEVICE_FRIENDLY_NAME,
strlen(dev->friendly_name),
dev->friendly_name);
ev->num_props++;
}
}
ipc_send_notif(hal_ipc, HAL_SERVICE_ID_BLUETOOTH, HAL_EV_DEVICE_FOUND,
size, buf);
}
static void update_device(struct device *dev, int8_t rssi,
const struct eir_data *eir)
{
uint8_t buf[IPC_MTU];
struct hal_ev_remote_device_props *ev = (void *) buf;
uint8_t old_type, new_type;
size_t size;
memset(buf, 0, sizeof(buf));
size = sizeof(*ev);
ev->status = HAL_STATUS_SUCCESS;
get_device_android_addr(dev, ev->bdaddr);
old_type = get_device_android_type(dev);
new_type = get_device_android_type(dev);
if (old_type != new_type) {
size += fill_hal_prop(buf + size, HAL_PROP_DEVICE_TYPE,
sizeof(new_type), &new_type);
ev->num_props++;
}
if (eir->class && dev->class != eir->class) {
dev->class = eir->class;
size += fill_hal_prop(buf + size, HAL_PROP_DEVICE_CLASS,
sizeof(dev->class), &dev->class);
ev->num_props++;
}
if (rssi && rssi_above_threshold(dev->rssi, rssi)) {
dev->rssi = rssi;
size += fill_hal_prop(buf + size, HAL_PROP_DEVICE_RSSI,
sizeof(dev->rssi), &dev->rssi);
ev->num_props++;
}
if (eir->name && strlen(eir->name) && strcmp(dev->name, eir->name)) {
g_free(dev->name);
dev->name = g_strdup(eir->name);
size += fill_hal_prop(buf + size, HAL_PROP_DEVICE_NAME,
strlen(dev->name), dev->name);
ev->num_props++;
/* when updating name also send stored friendly name */
if (dev->friendly_name) {
size += fill_hal_prop(buf + size,
HAL_PROP_DEVICE_FRIENDLY_NAME,
strlen(dev->friendly_name),
dev->friendly_name);
ev->num_props++;
}
}
if (ev->num_props)
ipc_send_notif(hal_ipc, HAL_SERVICE_ID_BLUETOOTH,
HAL_EV_REMOTE_DEVICE_PROPS, size, buf);
}
static bool is_new_device(const struct device *dev, unsigned int flags,
uint8_t bdaddr_type)
{
if (dev->found)
return false;
if (dev->bredr_paired || dev->le_paired)
return false;
if (bdaddr_type != BDADDR_BREDR &&
!(flags & (EIR_LIM_DISC | EIR_GEN_DISC)))
return false;
return true;
}
static void update_found_device(const bdaddr_t *bdaddr, uint8_t bdaddr_type,
int8_t rssi, bool confirm,
bool connectable,
const uint8_t *data, uint8_t data_len)
{
struct eir_data eir;
struct device *dev;
memset(&eir, 0, sizeof(eir));
eir_parse(&eir, data, data_len);
dev = get_device(bdaddr, bdaddr_type);
if (bdaddr_type == BDADDR_BREDR) {
dev->bredr = true;
dev->bredr_seen = time(NULL);
} else {
dev->le = true;
dev->bdaddr_type = bdaddr_type;
dev->le_seen = time(NULL);
}
/*
* Device found event needs to be send also for known device if this is
* new discovery session. Otherwise framework will ignore it.
*/
if (is_new_device(dev, eir.flags, bdaddr_type))
update_new_device(dev, rssi, &eir);
else
update_device(dev, rssi, &eir);
eir_data_free(&eir);
/* Notify Gatt if its registered for LE events */
if (bdaddr_type != BDADDR_BREDR && gatt_device_found_cb) {
const bdaddr_t *addr;
/*
* If RPA is set it means that IRK was received and ID address
* is being used. Android Framework is still using old RPA and
* it needs to be used also in GATT notifications. Also GATT
* HAL implementation is using RPA for devices matching.
*/
if (bacmp(&dev->rpa, BDADDR_ANY))
addr = &dev->rpa;
else
addr = &dev->bdaddr;
gatt_device_found_cb(addr, rssi, data_len, data, connectable,
dev->le_bonded);
}
if (!dev->bredr_paired && !dev->le_paired)
cache_device(dev);
if (confirm) {
char addr[18];
bool resolve_name = true;
ba2str(bdaddr, addr);
/*
* Don't need to confirm name if we have it already in cache
* Just check if device name is different than bdaddr
*/
if (g_strcmp0(dev->name, addr)) {
get_device_name(dev);
resolve_name = false;
}
info("Device %s needs name confirmation (resolve_name=%d)",
addr, resolve_name);
dev->confirm_id = confirm_device_name(bdaddr, bdaddr_type,
resolve_name);
}
}
static void mgmt_device_found_event(uint16_t index, uint16_t length,
const void *param, void *user_data)
{
const struct mgmt_ev_device_found *ev = param;
const uint8_t *eir;
uint16_t eir_len;
uint32_t flags;
bool confirm_name;
bool connectable;
char addr[18];
if (length < sizeof(*ev)) {
error("Too short device found event (%u bytes)", length);
return;
}
eir_len = le16_to_cpu(ev->eir_len);
if (length != sizeof(*ev) + eir_len) {
error("Device found event size mismatch (%u != %zu)",
length, sizeof(*ev) + eir_len);
return;
}
if (eir_len == 0)
eir = NULL;
else
eir = ev->eir;
flags = le32_to_cpu(ev->flags);
ba2str(&ev->addr.bdaddr, addr);
DBG("hci%u addr %s, rssi %d flags 0x%04x eir_len %u",
index, addr, ev->rssi, flags, eir_len);
confirm_name = flags & MGMT_DEV_FOUND_CONFIRM_NAME;
connectable = !(flags & MGMT_DEV_FOUND_NOT_CONNECTABLE);
update_found_device(&ev->addr.bdaddr, ev->addr.type, ev->rssi,
confirm_name, connectable, eir, eir_len);
}
static void mgmt_device_connected_event(uint16_t index, uint16_t length,
const void *param, void *user_data)
{
const struct mgmt_ev_device_connected *ev = param;
struct hal_ev_acl_state_changed hal_ev;
struct device *dev;
char addr[18];
if (length < sizeof(*ev)) {
error("Too short device connected event (%u bytes)", length);
return;
}
ba2str(&ev->addr.bdaddr, addr);
DBG("%s type %u", addr, ev->addr.type);
update_found_device(&ev->addr.bdaddr, ev->addr.type, 0, false, false,
&ev->eir[0], le16_to_cpu(ev->eir_len));
hal_ev.status = HAL_STATUS_SUCCESS;
hal_ev.state = HAL_ACL_STATE_CONNECTED;
dev = find_device(&ev->addr.bdaddr);
if (!dev)
return;
dev->connected = true;
get_device_android_addr(dev, hal_ev.bdaddr);
ipc_send_notif(hal_ipc, HAL_SERVICE_ID_BLUETOOTH,
HAL_EV_ACL_STATE_CHANGED, sizeof(hal_ev), &hal_ev);
}
static bool device_is_paired(struct device *dev, uint8_t addr_type)
{
if (addr_type == BDADDR_BREDR)
return dev->bredr_paired;
return dev->le_paired;
}
static bool device_is_bonded(struct device *dev)
{
return dev->bredr_bonded || dev->le_bonded;
}
static void mgmt_device_disconnected_event(uint16_t index, uint16_t length,
const void *param,
void *user_data)
{
const struct mgmt_ev_device_disconnected *ev = param;
struct hal_ev_acl_state_changed hal_ev;
struct device *dev;
uint8_t type = ev->addr.type;
if (length < sizeof(*ev)) {
error("Too short device disconnected event (%u bytes)", length);
return;
}
dev = find_device(&ev->addr.bdaddr);
if (!dev)
return;
hal_ev.status = HAL_STATUS_SUCCESS;
hal_ev.state = HAL_ACL_STATE_DISCONNECTED;
get_device_android_addr(dev, hal_ev.bdaddr);
ipc_send_notif(hal_ipc, HAL_SERVICE_ID_BLUETOOTH,
HAL_EV_ACL_STATE_CHANGED, sizeof(hal_ev), &hal_ev);
if (device_is_paired(dev, type) && !device_is_bonded(dev))
update_device_state(dev, type, HAL_STATUS_SUCCESS, false,
false, false);
dev->connected = false;
}
static uint8_t status_mgmt2hal(uint8_t mgmt)
{
switch (mgmt) {
case MGMT_STATUS_SUCCESS:
return HAL_STATUS_SUCCESS;
case MGMT_STATUS_NO_RESOURCES:
return HAL_STATUS_NOMEM;
case MGMT_STATUS_BUSY:
return HAL_STATUS_BUSY;
case MGMT_STATUS_NOT_SUPPORTED:
return HAL_STATUS_UNSUPPORTED;
case MGMT_STATUS_INVALID_PARAMS:
return HAL_STATUS_INVALID;
case MGMT_STATUS_AUTH_FAILED:
return HAL_STATUS_AUTH_FAILURE;
case MGMT_STATUS_NOT_CONNECTED:
return HAL_STATUS_REMOTE_DEVICE_DOWN;
default:
return HAL_STATUS_FAILED;
}
}
static void mgmt_connect_failed_event(uint16_t index, uint16_t length,
const void *param, void *user_data)
{
const struct mgmt_ev_connect_failed *ev = param;
struct device *dev;
if (length < sizeof(*ev)) {
error("Too short connect failed event (%u bytes)", length);
return;
}
DBG("");
dev = find_device(&ev->addr.bdaddr);
if (!dev)
return;
/*
* In case security mode 3 pairing we will get connect failed event
* in case e.g wrong PIN code entered. Let's check if device is
* bonding, if so update bond state
*/
if (!dev->pairing)
return;
update_device_state(dev, ev->addr.type, status_mgmt2hal(ev->status),
false, false, false);
}
static void mgmt_auth_failed_event(uint16_t index, uint16_t length,
const void *param, void *user_data)
{
const struct mgmt_ev_auth_failed *ev = param;
struct device *dev;
if (length < sizeof(*ev)) {
error("Too small auth failed mgmt event (%u bytes)", length);
return;
}
DBG("");
dev = find_device(&ev->addr.bdaddr);
if (!dev)
return;
if (!dev->pairing)
return;
update_device_state(dev, ev->addr.type, status_mgmt2hal(ev->status),
false, false, false);
}
static void mgmt_device_unpaired_event(uint16_t index, uint16_t length,
const void *param, void *user_data)
{
const struct mgmt_ev_device_unpaired *ev = param;
struct device *dev;
if (length < sizeof(*ev)) {
error("Too small device unpaired event (%u bytes)", length);
return;
}
DBG("");
/* TODO should device be disconnected ? */
dev = find_device(&ev->addr.bdaddr);
if (!dev)
return;
update_device_state(dev, ev->addr.type, HAL_STATUS_SUCCESS, false,
false, false);
/* Unpaired device is removed from the white list */
dev->in_white_list = false;
}
static void store_ltk(const bdaddr_t *dst, uint8_t bdaddr_type, bool master,
const uint8_t *key, uint8_t key_type, uint8_t enc_size,
uint16_t ediv, uint64_t rand)
{
const char *key_s, *keytype_s, *encsize_s, *ediv_s, *rand_s;
GKeyFile *key_file;
char key_str[33];
gsize length = 0;
char addr[18];
char *data;
int i;
key_file = g_key_file_new();
if (!g_key_file_load_from_file(key_file, DEVICES_FILE, 0, NULL)) {
g_key_file_free(key_file);
return;
}
ba2str(dst, addr);
key_s = master ? "LongTermKey" : "SlaveLongTermKey";
keytype_s = master ? "LongTermKeyType" : "SlaveLongTermKeyType";
encsize_s = master ? "LongTermKeyEncSize" : "SlaveLongTermKeyEncSize";
ediv_s = master ? "LongTermKeyEDiv" : "SlaveLongTermKeyEDiv";
rand_s = master ? "LongTermKeyRand" : "SlaveLongTermKeyRand";
for (i = 0; i < 16; i++)
sprintf(key_str + (i * 2), "%2.2X", key[i]);
g_key_file_set_string(key_file, addr, key_s, key_str);
g_key_file_set_integer(key_file, addr, keytype_s, key_type);
g_key_file_set_integer(key_file, addr, encsize_s, enc_size);
g_key_file_set_integer(key_file, addr, ediv_s, ediv);
g_key_file_set_uint64(key_file, addr, rand_s, rand);
data = g_key_file_to_data(key_file, &length, NULL);
g_file_set_contents(DEVICES_FILE, data, length, NULL);
g_free(data);
g_key_file_free(key_file);
}
static void new_long_term_key_event(uint16_t index, uint16_t length,
const void *param, void *user_data)
{
const struct mgmt_ev_new_long_term_key *ev = param;
struct device *dev;
char dst[18];
if (length < sizeof(*ev)) {
error("Too small long term key event (%u bytes)", length);
return;
}
ba2str(&ev->key.addr.bdaddr, dst);
DBG("new LTK for %s type %u enc_size %u store_hint %u",
dst, ev->key.type, ev->key.enc_size, ev->store_hint);
dev = find_device(&ev->key.addr.bdaddr);
if (!dev)
return;
update_device_state(dev, ev->key.addr.type, HAL_STATUS_SUCCESS, false,
true, !!ev->store_hint);
if (ev->store_hint) {
const struct mgmt_ltk_info *key = &ev->key;
uint16_t ediv;
uint64_t rand;
ediv = le16_to_cpu(key->ediv);
rand = le64_to_cpu(key->rand);
store_ltk(&key->addr.bdaddr, key->addr.type, key->master,
key->val, key->type, key->enc_size, ediv, rand);
}
/* TODO browse services here? */
}
static void store_csrk(struct device *dev)
{
GKeyFile *key_file;
char key_str[33];
char addr[18];
int i;
gsize length = 0;
char *data;
ba2str(&dev->bdaddr, addr);
key_file = g_key_file_new();
if (!g_key_file_load_from_file(key_file, DEVICES_FILE, 0, NULL)) {
g_key_file_free(key_file);
return;
}
if (dev->valid_local_csrk) {
for (i = 0; i < 16; i++)
sprintf(key_str + (i * 2), "%2.2X",
dev->local_csrk[i]);
g_key_file_set_string(key_file, addr, "LocalCSRK", key_str);
g_key_file_set_boolean(key_file, addr, "LocalCSRKAuthenticated",
dev->local_csrk_auth);
}
if (dev->valid_remote_csrk) {
for (i = 0; i < 16; i++)
sprintf(key_str + (i * 2), "%2.2X",
dev->remote_csrk[i]);
g_key_file_set_string(key_file, addr, "RemoteCSRK", key_str);
g_key_file_set_boolean(key_file, addr,
"RemoteCSRKAuthenticated",
dev->remote_csrk_auth);
}
data = g_key_file_to_data(key_file, &length, NULL);
g_file_set_contents(DEVICES_FILE, data, length, NULL);
g_free(data);
g_key_file_free(key_file);
}
static void new_csrk_callback(uint16_t index, uint16_t length,
const void *param, void *user_data)
{
const struct mgmt_ev_new_csrk *ev = param;
struct device *dev;
char dst[18];
if (length < sizeof(*ev)) {
error("Too small csrk event (%u bytes)", length);
return;
}
ba2str(&ev->key.addr.bdaddr, dst);
dev = get_device(&ev->key.addr.bdaddr, ev->key.addr.type);
if (!dev)
return;
switch (ev->key.type) {
case 0x00:
case 0x02:
memcpy(dev->local_csrk, ev->key.val, 16);
dev->local_sign_cnt = 0;
dev->valid_local_csrk = true;
dev->local_csrk_auth = ev->key.type == 0x02;
break;
case 0x01:
case 0x03:
memcpy(dev->remote_csrk, ev->key.val, 16);
dev->remote_sign_cnt = 0;
dev->valid_remote_csrk = true;
dev->remote_csrk_auth = ev->key.type == 0x03;
break;
default:
error("Unknown CSRK key type 02%02x", ev->key.type);
return;
}
update_device_state(dev, ev->key.addr.type, HAL_STATUS_SUCCESS, false,
true, !!ev->store_hint);
if (ev->store_hint)
store_csrk(dev);
}
static void store_irk(struct device *dev, const uint8_t *val)
{
GKeyFile *key_file;
char key_str[33];
char addr[18];
int i;
gsize length = 0;
char *data;
ba2str(&dev->bdaddr, addr);
key_file = g_key_file_new();
if (!g_key_file_load_from_file(key_file, DEVICES_FILE, 0, NULL)) {
g_key_file_free(key_file);
return;
}
for (i = 0; i < 16; i++)
sprintf(key_str + (i * 2), "%2.2X", val[i]);
g_key_file_set_string(key_file, addr, "IdentityResolvingKey", key_str);
data = g_key_file_to_data(key_file, &length, NULL);
g_file_set_contents(DEVICES_FILE, data, length, NULL);
g_free(data);
g_key_file_free(key_file);
}
static void new_irk_callback(uint16_t index, uint16_t length,
const void *param, void *user_data)
{
const struct mgmt_ev_new_irk *ev = param;
const struct mgmt_addr_info *addr = &ev->key.addr;
struct device *dev;
char dst[18], rpa[18];
if (length < sizeof(*ev)) {
error("To small New Irk Event (%u bytes)", length);
return;
}
ba2str(&ev->key.addr.bdaddr, dst);
ba2str(&ev->rpa, rpa);
DBG("new IRK for %s, RPA %s", dst, rpa);
if (!bacmp(&ev->rpa, BDADDR_ANY)) {
dev = get_device(&addr->bdaddr, addr->type);
if (!dev)
return;
} else {
dev = find_device(&addr->bdaddr);
if (dev && dev->bredr_paired) {
bacpy(&dev->rpa, &addr->bdaddr);
dev->rpa_type = addr->type;
/* TODO merge properties ie. UUIDs */
} else {
dev = find_device(&ev->rpa);
if (!dev)
return;
/* don't leave garbage in cache file */
remove_device_info(dev, CACHE_FILE);
/*
* RPA resolution is transparent for Android Framework
* ie. device is still access by RPA so it need to be
* keep. After bluetoothd restart device is advertised
* to Android with IDA and RPA is not set.
*/
bacpy(&dev->rpa, &dev->bdaddr);
dev->rpa_type = dev->bdaddr_type;
bacpy(&dev->bdaddr, &addr->bdaddr);
dev->bdaddr_type = addr->type;
}
}
update_device_state(dev, ev->key.addr.type, HAL_STATUS_SUCCESS, false,
true, !!ev->store_hint);
if (ev->store_hint)
store_irk(dev, ev->key.val);
}
static void register_mgmt_handlers(void)
{
mgmt_register(mgmt_if, MGMT_EV_NEW_SETTINGS, adapter.index,
new_settings_callback, NULL, NULL);
mgmt_register(mgmt_if, MGMT_EV_CLASS_OF_DEV_CHANGED, adapter.index,
mgmt_dev_class_changed_event, NULL, NULL);
mgmt_register(mgmt_if, MGMT_EV_LOCAL_NAME_CHANGED, adapter.index,
mgmt_local_name_changed_event, NULL, NULL);
mgmt_register(mgmt_if, MGMT_EV_NEW_LINK_KEY, adapter.index,
new_link_key_callback, NULL, NULL);
mgmt_register(mgmt_if, MGMT_EV_PIN_CODE_REQUEST, adapter.index,
pin_code_request_callback, NULL, NULL);
mgmt_register(mgmt_if, MGMT_EV_USER_CONFIRM_REQUEST, adapter.index,
user_confirm_request_callback, NULL, NULL);
mgmt_register(mgmt_if, MGMT_EV_USER_PASSKEY_REQUEST, adapter.index,
user_passkey_request_callback, NULL, NULL);
mgmt_register(mgmt_if, MGMT_EV_PASSKEY_NOTIFY, adapter.index,
user_passkey_notify_callback, NULL, NULL);
mgmt_register(mgmt_if, MGMT_EV_DISCOVERING, adapter.index,
mgmt_discovering_event, NULL, NULL);
mgmt_register(mgmt_if, MGMT_EV_DEVICE_FOUND, adapter.index,
mgmt_device_found_event, NULL, NULL);
mgmt_register(mgmt_if, MGMT_EV_DEVICE_CONNECTED, adapter.index,
mgmt_device_connected_event, NULL, NULL);
mgmt_register(mgmt_if, MGMT_EV_DEVICE_DISCONNECTED, adapter.index,
mgmt_device_disconnected_event, NULL, NULL);
mgmt_register(mgmt_if, MGMT_EV_CONNECT_FAILED, adapter.index,
mgmt_connect_failed_event, NULL, NULL);
mgmt_register(mgmt_if, MGMT_EV_AUTH_FAILED, adapter.index,
mgmt_auth_failed_event, NULL, NULL);
mgmt_register(mgmt_if, MGMT_EV_DEVICE_UNPAIRED, adapter.index,
mgmt_device_unpaired_event, NULL, NULL);
mgmt_register(mgmt_if, MGMT_EV_NEW_LONG_TERM_KEY, adapter.index,
new_long_term_key_event, NULL, NULL);
mgmt_register(mgmt_if, MGMT_EV_NEW_CSRK, adapter.index,
new_csrk_callback, NULL, NULL);
mgmt_register(mgmt_if, MGMT_EV_NEW_IRK, adapter.index, new_irk_callback,
NULL, NULL);
}
static void load_link_keys_complete(uint8_t status, uint16_t length,
const void *param, void *user_data)
{
bt_bluetooth_ready cb = user_data;
int err;
if (status) {
error("Failed to load link keys for index %u: %s (0x%02x)",
adapter.index, mgmt_errstr(status), status);
err = -EIO;
goto failed;
}
DBG("status %u", status);
cb(0, &adapter.bdaddr);
return;
failed:
cb(err, NULL);
}
static void load_link_keys(GSList *keys, bt_bluetooth_ready cb)
{
struct mgmt_cp_load_link_keys *cp;
struct mgmt_link_key_info *key;
size_t key_count, cp_size;
unsigned int id;
key_count = g_slist_length(keys);
DBG("keys %zu ", key_count);
cp_size = sizeof(*cp) + (key_count * sizeof(*key));
cp = g_malloc0(cp_size);
/*
* Even if the list of stored keys is empty, it is important to
* load an empty list into the kernel. That way it is ensured
* that no old keys from a previous daemon are present.
*/
cp->key_count = cpu_to_le16(key_count);
for (key = cp->keys; keys != NULL; keys = g_slist_next(keys), key++)
memcpy(key, keys->data, sizeof(*key));
id = mgmt_send(mgmt_if, MGMT_OP_LOAD_LINK_KEYS, adapter.index,
cp_size, cp, load_link_keys_complete, cb, NULL);
g_free(cp);
if (id == 0) {
error("Failed to load link keys");
cb(-EIO, NULL);
}
}
static void load_ltk_complete(uint8_t status, uint16_t length,
const void *param, void *user_data)
{
if (status == MGMT_STATUS_SUCCESS)
return;
info("Failed to load LTKs: %s (0x%02x)", mgmt_errstr(status), status);
}
static void load_ltks(GSList *ltks)
{
struct mgmt_cp_load_long_term_keys *cp;
struct mgmt_ltk_info *ltk;
size_t ltk_count, cp_size;
GSList *l;
ltk_count = g_slist_length(ltks);
DBG("ltks %zu", ltk_count);
cp_size = sizeof(*cp) + (ltk_count * sizeof(*ltk));
cp = g_malloc0(cp_size);
/*
* Even if the list of stored keys is empty, it is important to load
* an empty list into the kernel. That way it is ensured that no old
* keys from a previous daemon are present.
*/
cp->key_count = cpu_to_le16(ltk_count);
for (l = ltks, ltk = cp->keys; l != NULL; l = g_slist_next(l), ltk++)
memcpy(ltk, l->data, sizeof(*ltk));
if (mgmt_send(mgmt_if, MGMT_OP_LOAD_LONG_TERM_KEYS, adapter.index,
cp_size, cp, load_ltk_complete, NULL, NULL) == 0)
error("Failed to load LTKs");
g_free(cp);
}
static void load_irk_complete(uint8_t status, uint16_t length,
const void *param, void *user_data)
{
if (status == MGMT_STATUS_SUCCESS)
return;
info("Failed to load IRKs: %s (0x%02x)", mgmt_errstr(status), status);
}
static void load_irks(GSList *irks)
{
struct mgmt_cp_load_irks *cp;
struct mgmt_irk_info *irk;
size_t irk_count, cp_size;
GSList *l;
irk_count = g_slist_length(irks);
DBG("irks %zu", irk_count);
cp_size = sizeof(*cp) + (irk_count * sizeof(*irk));
cp = g_malloc0(cp_size);
cp->irk_count = cpu_to_le16(irk_count);
for (l = irks, irk = cp->irks; l != NULL; l = g_slist_next(l), irk++)
memcpy(irk, irks->data, sizeof(*irk));
if (mgmt_send(mgmt_if, MGMT_OP_LOAD_IRKS, adapter.index, cp_size, cp,
load_irk_complete, NULL, NULL) == 0)
error("Failed to load IRKs");
g_free(cp);
}
static uint8_t get_adapter_uuids(void)
{
struct hal_ev_adapter_props_changed *ev;
GSList *list = adapter.uuids;
size_t uuid_count = g_slist_length(list);
size_t len = uuid_count * sizeof(uint128_t);
uint8_t buf[BASELEN_PROP_CHANGED + len];
uint8_t *p;
memset(buf, 0, sizeof(buf));
ev = (void *) buf;
ev->num_props = 1;
ev->status = HAL_STATUS_SUCCESS;
ev->props[0].type = HAL_PROP_ADAPTER_UUIDS;
ev->props[0].len = len;
p = ev->props->val;
for (; list; list = g_slist_next(list)) {
uuid_t *uuid = list->data;
memcpy(p, &uuid->value.uuid128, sizeof(uint128_t));
p += sizeof(uint128_t);
}
ipc_send_notif(hal_ipc, HAL_SERVICE_ID_BLUETOOTH,
HAL_EV_ADAPTER_PROPS_CHANGED, sizeof(buf), ev);
return HAL_STATUS_SUCCESS;
}
static void remove_uuid_complete(uint8_t status, uint16_t length,
const void *param, void *user_data)
{
if (status != MGMT_STATUS_SUCCESS) {
error("Failed to remove UUID: %s (0x%02x)", mgmt_errstr(status),
status);
return;
}
mgmt_dev_class_changed_event(adapter.index, length, param, NULL);
get_adapter_uuids();
}
static void remove_uuid(uuid_t *uuid)
{
uint128_t uint128;
struct mgmt_cp_remove_uuid cp;
ntoh128((uint128_t *) uuid->value.uuid128.data, &uint128);
htob128(&uint128, (uint128_t *) cp.uuid);
mgmt_send(mgmt_if, MGMT_OP_REMOVE_UUID, adapter.index, sizeof(cp), &cp,
remove_uuid_complete, NULL, NULL);
}
static void add_uuid_complete(uint8_t status, uint16_t length,
const void *param, void *user_data)
{
if (status != MGMT_STATUS_SUCCESS) {
error("Failed to add UUID: %s (0x%02x)", mgmt_errstr(status),
status);
return;
}
mgmt_dev_class_changed_event(adapter.index, length, param, NULL);
get_adapter_uuids();
}
static void add_uuid(uint8_t svc_hint, uuid_t *uuid)
{
uint128_t uint128;
struct mgmt_cp_add_uuid cp;
ntoh128((uint128_t *) uuid->value.uuid128.data, &uint128);
htob128(&uint128, (uint128_t *) cp.uuid);
cp.svc_hint = svc_hint;
mgmt_send(mgmt_if, MGMT_OP_ADD_UUID, adapter.index, sizeof(cp), &cp,
add_uuid_complete, NULL, NULL);
}
int bt_adapter_add_record(sdp_record_t *rec, uint8_t svc_hint)
{
uuid_t *uuid;
uuid = sdp_uuid_to_uuid128(&rec->svclass);
if (g_slist_find_custom(adapter.uuids, uuid, sdp_uuid_cmp)) {
char uuid_str[32];
sdp_uuid2strn(uuid, uuid_str, sizeof(uuid_str));
DBG("UUID %s already added", uuid_str);
bt_free(uuid);
return -EALREADY;
}
adapter.uuids = g_slist_prepend(adapter.uuids, uuid);
add_uuid(svc_hint, uuid);
return add_record_to_server(&adapter.bdaddr, rec);
}
void bt_adapter_remove_record(uint32_t handle)
{
sdp_record_t *rec;
GSList *uuid_found;
rec = sdp_record_find(handle);
if (!rec)
return;
uuid_found = g_slist_find_custom(adapter.uuids, &rec->svclass,
sdp_uuid_cmp);
if (uuid_found) {
uuid_t *uuid = uuid_found->data;
remove_uuid(uuid);
adapter.uuids = g_slist_remove(adapter.uuids, uuid);
free(uuid);
}
remove_record_from_server(handle);
}
static void set_mode_complete(uint8_t status, uint16_t length,
const void *param, void *user_data)
{
if (status != MGMT_STATUS_SUCCESS) {
error("Failed to set mode: %s (0x%02x)",
mgmt_errstr(status), status);
return;
}
/*
* The parameters are identical and also the task that is
* required in both cases. So it is safe to just call the
* event handling functions here.
*/
new_settings_callback(adapter.index, length, param, NULL);
}
static bool set_mode(uint16_t opcode, uint8_t mode)
{
struct mgmt_mode cp;
memset(&cp, 0, sizeof(cp));
cp.val = mode;
DBG("opcode=0x%x mode=0x%x", opcode, mode);
if (mgmt_send(mgmt_if, opcode, adapter.index, sizeof(cp), &cp,
set_mode_complete, NULL, NULL) > 0)
return true;
error("Failed to set mode");
return false;
}
static void set_io_capability(void)
{
struct mgmt_cp_set_io_capability cp;
memset(&cp, 0, sizeof(cp));
cp.io_capability = DEFAULT_IO_CAPABILITY;
if (mgmt_send(mgmt_if, MGMT_OP_SET_IO_CAPABILITY, adapter.index,
sizeof(cp), &cp, NULL, NULL, NULL) == 0)
error("Failed to set IO capability");
}
static void set_device_id(void)
{
struct mgmt_cp_set_device_id cp;
memset(&cp, 0, sizeof(cp));
cp.source = cpu_to_le16(bt_config_get_pnp_source());
cp.vendor = cpu_to_le16(bt_config_get_pnp_vendor());
cp.product = cpu_to_le16(bt_config_get_pnp_product());
cp.version = cpu_to_le16(bt_config_get_pnp_version());
if (mgmt_send(mgmt_if, MGMT_OP_SET_DEVICE_ID, adapter.index,
sizeof(cp), &cp, NULL, NULL, NULL) == 0)
error("Failed to set device id");
register_device_id(bt_config_get_pnp_source(),
bt_config_get_pnp_vendor(),
bt_config_get_pnp_product(),
bt_config_get_pnp_version());
bt_adapter_add_record(sdp_record_find(0x10000), 0x00);
}
static void set_adapter_name_complete(uint8_t status, uint16_t length,
const void *param, void *user_data)
{
const struct mgmt_cp_set_local_name *rp = param;
if (status != MGMT_STATUS_SUCCESS) {
error("Failed to set name: %s (0x%02x)", mgmt_errstr(status),
status);
return;
}
adapter_set_name(rp->name);
}
static uint8_t set_adapter_name(const uint8_t *name, uint16_t len)
{
struct mgmt_cp_set_local_name cp;
memset(&cp, 0, sizeof(cp));
memcpy(cp.name, name, len);
if (mgmt_send(mgmt_if, MGMT_OP_SET_LOCAL_NAME, adapter.index,
sizeof(cp), &cp, set_adapter_name_complete,
NULL, NULL) > 0)
return HAL_STATUS_SUCCESS;
error("Failed to set name");
return HAL_STATUS_FAILED;
}
static uint8_t set_adapter_discoverable_timeout(const void *buf, uint16_t len)
{
const uint32_t *timeout = buf;
if (len != sizeof(*timeout)) {
error("Invalid set disc timeout size (%u bytes), terminating",
len);
raise(SIGTERM);
return HAL_STATUS_FAILED;
}
/*
* Android handles discoverable timeout in Settings app.
* There is no need to use kernel feature for that.
* Just need to store this value here
*/
memcpy(&adapter.discoverable_timeout, timeout, sizeof(uint32_t));
store_adapter_config();
send_adapter_property(HAL_PROP_ADAPTER_DISC_TIMEOUT,
sizeof(adapter.discoverable_timeout),
&adapter.discoverable_timeout);
return HAL_STATUS_SUCCESS;
}
static void clear_uuids(void)
{
struct mgmt_cp_remove_uuid cp;
memset(&cp, 0, sizeof(cp));
mgmt_send(mgmt_if, MGMT_OP_REMOVE_UUID, adapter.index, sizeof(cp),
&cp, NULL, NULL, NULL);
}
static struct device *create_device_from_info(GKeyFile *key_file,
const char *peer)
{
struct device *dev;
uint8_t type;
bdaddr_t bdaddr;
char **uuids;
char *str;
/* BREDR if not present */
type = g_key_file_get_integer(key_file, peer, "AddressType", NULL);
str2ba(peer, &bdaddr);
dev = create_device(&bdaddr, type);
if (type != BDADDR_BREDR)
dev->bredr = g_key_file_get_boolean(key_file, peer, "BREDR",
NULL);
str = g_key_file_get_string(key_file, peer, "LocalCSRK", NULL);
if (str) {
int i;
dev->valid_local_csrk = true;
for (i = 0; i < 16; i++)
sscanf(str + (i * 2), "%02hhX", &dev->local_csrk[i]);
g_free(str);
dev->local_sign_cnt = g_key_file_get_integer(key_file, peer,
"LocalCSRKSignCounter", NULL);
dev->local_csrk_auth = g_key_file_get_boolean(key_file, peer,
"LocalCSRKAuthenticated", NULL);
}
str = g_key_file_get_string(key_file, peer, "RemoteCSRK", NULL);
if (str) {
int i;
dev->valid_remote_csrk = true;
for (i = 0; i < 16; i++)
sscanf(str + (i * 2), "%02hhX", &dev->remote_csrk[i]);
g_free(str);
dev->remote_sign_cnt = g_key_file_get_integer(key_file, peer,
"RemoteCSRKSignCounter", NULL);
dev->remote_csrk_auth = g_key_file_get_boolean(key_file, peer,
"RemoteCSRKAuthenticated",
NULL);
}
str = g_key_file_get_string(key_file, peer, "GattCCC", NULL);
if (str) {
dev->gatt_ccc = atoi(str);
g_free(str);
}
str = g_key_file_get_string(key_file, peer, "Name", NULL);
if (str) {
g_free(dev->name);
dev->name = str;
}
str = g_key_file_get_string(key_file, peer, "FriendlyName", NULL);
if (str) {
g_free(dev->friendly_name);
dev->friendly_name = str;
}
dev->class = g_key_file_get_integer(key_file, peer, "Class", NULL);
if (dev->bredr)
dev->bredr_seen = g_key_file_get_integer(key_file, peer,
"Timestamp",
NULL);
else
dev->le_seen = g_key_file_get_integer(key_file, peer,
"Timestamp", NULL);
uuids = g_key_file_get_string_list(key_file, peer, "Services", NULL,
NULL);
if (uuids) {
char **uuid;
for (uuid = uuids; *uuid; uuid++) {
uint8_t *u = g_malloc0(16);
int i;
for (i = 0; i < 16; i++)
sscanf((*uuid) + (i * 2), "%02hhX", &u[i]);
dev->uuids = g_slist_append(dev->uuids, u);
}
g_strfreev(uuids);
}
return dev;
}
static struct mgmt_link_key_info *get_key_info(GKeyFile *key_file,
const char *peer)
{
struct mgmt_link_key_info *info = NULL;
char *str;
unsigned int i;
str = g_key_file_get_string(key_file, peer, "LinkKey", NULL);
if (!str || strlen(str) != 32)
goto failed;
info = g_new0(struct mgmt_link_key_info, 1);
str2ba(peer, &info->addr.bdaddr);
for (i = 0; i < sizeof(info->val); i++)
sscanf(str + (i * 2), "%02hhX", &info->val[i]);
info->type = g_key_file_get_integer(key_file, peer, "LinkKeyType",
NULL);
info->pin_len = g_key_file_get_integer(key_file, peer,
"LinkKeyPinLength", NULL);
failed:
g_free(str);
return info;
}
static struct mgmt_ltk_info *get_ltk_info(GKeyFile *key_file, const char *peer,
bool master)
{
const char *key_s, *keytype_s, *encsize_s, *ediv_s, *rand_s;
struct mgmt_ltk_info *info = NULL;
char *key;
unsigned int i;
key_s = master ? "LongTermKey" : "SlaveLongTermKey";
keytype_s = master ? "LongTermKeyType" : "SlaveLongTermKeyType";
encsize_s = master ? "LongTermKeyEncSize" : "SlaveLongTermKeyEncSize";
ediv_s = master ? "LongTermKeyEDiv" : "SlaveLongTermKeyEDiv";
rand_s = master ? "LongTermKeyRand" : "SlaveLongTermKeyRand";
key = g_key_file_get_string(key_file, peer, key_s, NULL);
if (!key || strlen(key) != 32)
goto failed;
info = g_new0(struct mgmt_ltk_info, 1);
str2ba(peer, &info->addr.bdaddr);
info->addr.type = g_key_file_get_integer(key_file, peer, "AddressType",
NULL);
for (i = 0; i < sizeof(info->val); i++)
sscanf(key + (i * 2), "%02hhX", &info->val[i]);
info->type = g_key_file_get_integer(key_file, peer, keytype_s, NULL);
info->enc_size = g_key_file_get_integer(key_file, peer, encsize_s,
NULL);
info->rand = g_key_file_get_uint64(key_file, peer, rand_s, NULL);
info->rand = cpu_to_le64(info->rand);
info->ediv = g_key_file_get_integer(key_file, peer, ediv_s, NULL);
info->ediv = cpu_to_le16(info->ediv);
info->master = master;
failed:
g_free(key);
return info;
}
static struct mgmt_irk_info *get_irk_info(GKeyFile *key_file, const char *peer)
{
struct mgmt_irk_info *info = NULL;
unsigned int i;
char *str;
str = g_key_file_get_string(key_file, peer, "IdentityResolvingKey",
NULL);
if (!str || strlen(str) != 32)
goto failed;
info = g_new0(struct mgmt_irk_info, 1);
str2ba(peer, &info->addr.bdaddr);
info->addr.type = g_key_file_get_integer(key_file, peer, "AddressType",
NULL);
for (i = 0; i < sizeof(info->val); i++)
sscanf(str + (i * 2), "%02hhX", &info->val[i]);
failed:
g_free(str);
return info;
}
static time_t device_timestamp(const struct device *dev)
{
if (dev->bredr && dev->le) {
if (dev->le_seen > dev->bredr_seen)
return dev->le_seen;
return dev->bredr_seen;
}
if (dev->bredr)
return dev->bredr_seen;
return dev->le_seen;
}
static int device_timestamp_cmp(gconstpointer a, gconstpointer b)
{
const struct device *deva = a;
const struct device *devb = b;
return device_timestamp(deva) < device_timestamp(devb);
}
static void load_devices_cache(void)
{
GKeyFile *key_file;
gchar **devs;
gsize len = 0;
unsigned int i;
key_file = g_key_file_new();
g_key_file_load_from_file(key_file, CACHE_FILE, 0, NULL);
devs = g_key_file_get_groups(key_file, &len);
for (i = 0; i < len; i++) {
struct device *dev;
dev = create_device_from_info(key_file, devs[i]);
cached_devices = g_slist_prepend(cached_devices, dev);
}
cached_devices = g_slist_sort(cached_devices, device_timestamp_cmp);
g_strfreev(devs);
g_key_file_free(key_file);
}
static void load_devices_info(bt_bluetooth_ready cb)
{
GKeyFile *key_file;
gchar **devs;
gsize len = 0;
unsigned int i;
GSList *keys = NULL;
GSList *ltks = NULL;
GSList *irks = NULL;
key_file = g_key_file_new();
g_key_file_load_from_file(key_file, DEVICES_FILE, 0, NULL);
devs = g_key_file_get_groups(key_file, &len);
for (i = 0; i < len; i++) {
struct mgmt_link_key_info *key_info;
struct mgmt_ltk_info *ltk_info;
struct mgmt_irk_info *irk_info;
struct mgmt_ltk_info *slave_ltk_info;
struct device *dev;
dev = create_device_from_info(key_file, devs[i]);
key_info = get_key_info(key_file, devs[i]);
irk_info = get_irk_info(key_file, devs[i]);
ltk_info = get_ltk_info(key_file, devs[i], true);
slave_ltk_info = get_ltk_info(key_file, devs[i], false);
/*
* Skip devices that have no permanent keys
* (CSRKs are loaded by create_device_from_info())
*/
if (!dev->valid_local_csrk && !dev->valid_remote_csrk &&
!key_info && !ltk_info &&
!slave_ltk_info && !irk_info) {
error("Failed to load keys for %s, skipping", devs[i]);
free_device(dev);
continue;
}
if (key_info) {
keys = g_slist_prepend(keys, key_info);
dev->bredr_paired = true;
dev->bredr_bonded = true;
}
if (irk_info)
irks = g_slist_prepend(irks, irk_info);
if (ltk_info)
ltks = g_slist_prepend(ltks, ltk_info);
if (slave_ltk_info)
ltks = g_slist_prepend(ltks, slave_ltk_info);
if (dev->valid_local_csrk || dev->valid_remote_csrk ||
irk_info || ltk_info || slave_ltk_info) {
dev->le_paired = true;
dev->le_bonded = true;
}
bonded_devices = g_slist_prepend(bonded_devices, dev);
}
load_ltks(ltks);
g_slist_free_full(ltks, g_free);
load_irks(irks);
g_slist_free_full(irks, g_free);
load_link_keys(keys, cb);
g_slist_free_full(keys, g_free);
g_strfreev(devs);
g_key_file_free(key_file);
}
static void set_adapter_class(void)
{
struct mgmt_cp_set_dev_class cp;
memset(&cp, 0, sizeof(cp));
/*
* kernel assign the major and minor numbers straight to dev_class[0]
* and dev_class[1] without considering the proper bit shifting.
*/
cp.major = ADAPTER_MAJOR_CLASS & 0x1f;
cp.minor = ADAPTER_MINOR_CLASS << 2;
if (mgmt_send(mgmt_if, MGMT_OP_SET_DEV_CLASS, adapter.index, sizeof(cp),
&cp, NULL, NULL, NULL) > 0)
return;
error("Failed to set class of device");
}
static void enable_mps(void)
{
uuid_t uuid, *uuid128;
sdp_uuid16_create(&uuid, MPS_SVCLASS_ID);
uuid128 = sdp_uuid_to_uuid128(&uuid);
if (!uuid128)
return;
register_mps(true);
adapter.uuids = g_slist_prepend(adapter.uuids, uuid128);
add_uuid(0, uuid128);
}
static void clear_auto_connect_list_complete(uint8_t status,
uint16_t length,
const void *param,
void *user_data)
{
if (status != MGMT_STATUS_SUCCESS)
error("Failed to clear auto connect list: %s (0x%02x)",
mgmt_errstr(status), status);
}
static void clear_auto_connect_list(void)
{
struct mgmt_cp_remove_device cp;
if (!kernel_conn_control)
return;
memset(&cp, 0, sizeof(cp));
if (mgmt_send(mgmt_if, MGMT_OP_REMOVE_DEVICE, adapter.index, sizeof(cp),
&cp, clear_auto_connect_list_complete, NULL, NULL) > 0)
return;
error("Could not clear auto connect list");
}
static void read_info_complete(uint8_t status, uint16_t length,
const void *param, void *user_data)
{
const struct mgmt_rp_read_info *rp = param;
bt_bluetooth_ready cb = user_data;
uint32_t missing_settings;
int err;
DBG("");
if (status) {
error("Failed to read info for index %u: %s (0x%02x)",
adapter.index, mgmt_errstr(status), status);
err = -EIO;
goto failed;
}
if (length < sizeof(*rp)) {
error("Too small read info complete response");
err = -EIO;
goto failed;
}
if (!bacmp(&rp->bdaddr, BDADDR_ANY)) {
error("No Bluetooth address");
err = -ENODEV;
goto failed;
}
load_adapter_config();
if (!bacmp(&adapter.bdaddr, BDADDR_ANY)) {
bacpy(&adapter.bdaddr, &rp->bdaddr);
store_adapter_config();
} else if (bacmp(&adapter.bdaddr, &rp->bdaddr)) {
error("Bluetooth address mismatch");
err = -ENODEV;
goto failed;
}
if (adapter.name && g_strcmp0(adapter.name, (const char *) rp->name))
set_adapter_name((uint8_t *)adapter.name, strlen(adapter.name));
set_adapter_class();
/* Store adapter information */
adapter.dev_class = rp->dev_class[0] | (rp->dev_class[1] << 8) |
(rp->dev_class[2] << 16);
adapter.supported_settings = le32_to_cpu(rp->supported_settings);
adapter.current_settings = le32_to_cpu(rp->current_settings);
/* TODO: Register all event notification handlers */
register_mgmt_handlers();
clear_uuids();
clear_auto_connect_list();
set_io_capability();
set_device_id();
enable_mps();
missing_settings = adapter.current_settings ^
adapter.supported_settings;
if (missing_settings & MGMT_SETTING_SSP)
set_mode(MGMT_OP_SET_SSP, 0x01);
if (missing_settings & MGMT_SETTING_BONDABLE)
set_mode(MGMT_OP_SET_BONDABLE, 0x01);
load_devices_info(cb);
load_devices_cache();
return;
failed:
cb(err, NULL);
}
static void mgmt_index_added_event(uint16_t index, uint16_t length,
const void *param, void *user_data)
{
bt_bluetooth_ready cb = user_data;
DBG("index %u", index);
if (adapter.index != MGMT_INDEX_NONE) {
DBG("skip event for index %u", index);
return;
}
if (option_index != MGMT_INDEX_NONE && option_index != index) {
DBG("skip event for index %u (option %u)", index, option_index);
return;
}
adapter.index = index;
if (mgmt_send(mgmt_if, MGMT_OP_READ_INFO, index, 0, NULL,
read_info_complete, cb, NULL) == 0) {
cb(-EIO, NULL);
return;
}
}
static void mgmt_index_removed_event(uint16_t index, uint16_t length,
const void *param, void *user_data)
{
DBG("index %u", index);
if (index != adapter.index)
return;
error("Adapter was removed. Exiting.");
raise(SIGTERM);
}
static void read_index_list_complete(uint8_t status, uint16_t length,
const void *param, void *user_data)
{
const struct mgmt_rp_read_index_list *rp = param;
bt_bluetooth_ready cb = user_data;
uint16_t num;
int i;
DBG("");
if (status) {
error("%s: Failed to read index list: %s (0x%02x)", __func__,
mgmt_errstr(status), status);
goto failed;
}
if (length < sizeof(*rp)) {
error("%s: Wrong size of read index list response", __func__);
goto failed;
}
num = le16_to_cpu(rp->num_controllers);
DBG("Number of controllers: %u", num);
if (num * sizeof(uint16_t) + sizeof(*rp) != length) {
error("%s: Incorrect pkt size for index list rsp", __func__);
goto failed;
}
if (adapter.index != MGMT_INDEX_NONE)
return;
for (i = 0; i < num; i++) {
uint16_t index = le16_to_cpu(rp->index[i]);
if (option_index != MGMT_INDEX_NONE && option_index != index)
continue;
if (mgmt_send(mgmt_if, MGMT_OP_READ_INFO, index, 0, NULL,
read_info_complete, cb, NULL) == 0)
goto failed;
adapter.index = index;
return;
}
return;
failed:
cb(-EIO, NULL);
}
static void read_version_complete(uint8_t status, uint16_t length,
const void *param, void *user_data)
{
const struct mgmt_rp_read_version *rp = param;
uint8_t mgmt_version, mgmt_revision;
bt_bluetooth_ready cb = user_data;
DBG("");
if (status) {
error("Failed to read version information: %s (0x%02x)",
mgmt_errstr(status), status);
goto failed;
}
if (length < sizeof(*rp)) {
error("Wrong size response");
goto failed;
}
mgmt_version = rp->version;
mgmt_revision = le16_to_cpu(rp->revision);
info("Bluetooth management interface %u.%u initialized",
mgmt_version, mgmt_revision);
if (MGMT_VERSION(mgmt_version, mgmt_revision) < MGMT_VERSION(1, 3)) {
error("Version 1.3 or later of management interface required");
goto failed;
}
/* Starting from mgmt 1.7, kernel can handle connection control */
if (MGMT_VERSION(mgmt_version, mgmt_revision) >= MGMT_VERSION(1, 7)) {
info("Kernel connection control will be used");
kernel_conn_control = true;
}
mgmt_register(mgmt_if, MGMT_EV_INDEX_ADDED, MGMT_INDEX_NONE,
mgmt_index_added_event, cb, NULL);
mgmt_register(mgmt_if, MGMT_EV_INDEX_REMOVED, MGMT_INDEX_NONE,
mgmt_index_removed_event, NULL, NULL);
if (mgmt_send(mgmt_if, MGMT_OP_READ_INDEX_LIST, MGMT_INDEX_NONE, 0,
NULL, read_index_list_complete, cb, NULL) > 0)
return;
error("Failed to read controller index list");
failed:
cb(-EIO, NULL);
}
bool bt_bluetooth_start(int index, bool mgmt_dbg, bt_bluetooth_ready cb)
{
DBG("index %d", index);
mgmt_if = mgmt_new_default();
if (!mgmt_if) {
error("Failed to access management interface");
return false;
}
if (mgmt_dbg)
mgmt_set_debug(mgmt_if, mgmt_debug, "mgmt_if: ", NULL);
if (mgmt_send(mgmt_if, MGMT_OP_READ_VERSION, MGMT_INDEX_NONE, 0, NULL,
read_version_complete, cb, NULL) == 0) {
error("Error sending READ_VERSION mgmt command");
mgmt_unref(mgmt_if);
mgmt_if = NULL;
return false;
}
if (index >= 0)
option_index = index;
return true;
}
static void shutdown_complete(uint8_t status, uint16_t length,
const void *param, void *user_data)
{
bt_bluetooth_stopped cb = user_data;
if (status != MGMT_STATUS_SUCCESS)
error("Clean controller shutdown failed");
cb();
}
bool bt_bluetooth_stop(bt_bluetooth_stopped cb)
{
struct mgmt_mode cp;
if (adapter.index == MGMT_INDEX_NONE)
return false;
info("Switching controller off");
memset(&cp, 0, sizeof(cp));
return mgmt_send(mgmt_if, MGMT_OP_SET_POWERED, adapter.index,
sizeof(cp), &cp, shutdown_complete, (void *)cb,
NULL) > 0;
}
void bt_bluetooth_cleanup(void)
{
g_free(adapter.name);
adapter.name = NULL;
mgmt_unref(mgmt_if);
mgmt_if = NULL;
}
static bool set_discoverable(uint8_t mode, uint16_t timeout)
{
struct mgmt_cp_set_discoverable cp;
memset(&cp, 0, sizeof(cp));
cp.val = mode;
cp.timeout = cpu_to_le16(timeout);
DBG("mode %u timeout %u", mode, timeout);
if (mgmt_send(mgmt_if, MGMT_OP_SET_DISCOVERABLE, adapter.index,
sizeof(cp), &cp, set_mode_complete, NULL, NULL) > 0)
return true;
error("Failed to set mode discoverable");
return false;
}
static uint8_t get_adapter_address(void)
{
uint8_t buf[6];
bdaddr2android(&adapter.bdaddr, buf);
send_adapter_property(HAL_PROP_ADAPTER_ADDR, sizeof(buf), buf);
return HAL_STATUS_SUCCESS;
}
static uint8_t get_adapter_name(void)
{
if (!adapter.name)
return HAL_STATUS_FAILED;
adapter_name_changed((uint8_t *) adapter.name);
return HAL_STATUS_SUCCESS;
}
static uint8_t get_adapter_class(void)
{
DBG("");
adapter_class_changed();
return HAL_STATUS_SUCCESS;
}
static uint8_t settings2type(void)
{
bool bredr, le;
bredr = adapter.current_settings & MGMT_SETTING_BREDR;
le = adapter.current_settings & MGMT_SETTING_LE;
if (bredr && le)
return HAL_TYPE_DUAL;
if (bredr && !le)
return HAL_TYPE_BREDR;
if (!bredr && le)
return HAL_TYPE_LE;
return 0;
}
static uint8_t get_adapter_type(void)
{
uint8_t type;
DBG("");
type = settings2type();
if (!type)
return HAL_STATUS_FAILED;
send_adapter_property(HAL_PROP_ADAPTER_TYPE, sizeof(type), &type);
return HAL_STATUS_SUCCESS;
}
static uint8_t get_adapter_service_rec(void)
{
DBG("Not implemented");
/* TODO: Add implementation */
return HAL_STATUS_FAILED;
}
static uint8_t get_adapter_scan_mode(void)
{
DBG("");
scan_mode_changed();
return HAL_STATUS_SUCCESS;
}
static uint8_t get_adapter_bonded_devices(void)
{
uint8_t buf[sizeof(bdaddr_t) * g_slist_length(bonded_devices)];
int i = 0;
GSList *l;
DBG("");
for (l = bonded_devices; l; l = g_slist_next(l)) {
struct device *dev = l->data;
get_device_android_addr(dev, buf + (i * sizeof(bdaddr_t)));
i++;
}
send_adapter_property(HAL_PROP_ADAPTER_BONDED_DEVICES,
i * sizeof(bdaddr_t), buf);
return HAL_STATUS_SUCCESS;
}
static uint8_t get_adapter_discoverable_timeout(void)
{
send_adapter_property(HAL_PROP_ADAPTER_DISC_TIMEOUT,
sizeof(adapter.discoverable_timeout),
&adapter.discoverable_timeout);
return HAL_STATUS_SUCCESS;
}
static void prepare_le_features(uint8_t *le_features)
{
le_features[0] = !!(adapter.current_settings & MGMT_SETTING_PRIVACY);
le_features[1] = adapter.max_advert_instance;
le_features[2] = adapter.rpa_offload_supported;
le_features[3] = adapter.max_irk_list_size;
le_features[4] = adapter.max_scan_filters_supported;
/* lo byte */
le_features[5] = adapter.scan_result_storage_size;
/* hi byte */
le_features[6] = adapter.scan_result_storage_size >> 8;
le_features[7] = adapter.activity_energy_info_supported;
}
static uint8_t get_adapter_le_features(void)
{
uint8_t le_features[8];
prepare_le_features(le_features);
send_adapter_property(HAL_PROP_ADAPTER_LOCAL_LE_FEAT,
sizeof(le_features), le_features);
return HAL_STATUS_SUCCESS;
}
static void handle_get_adapter_prop_cmd(const void *buf, uint16_t len)
{
const struct hal_cmd_get_adapter_prop *cmd = buf;
uint8_t status;
switch (cmd->type) {
case HAL_PROP_ADAPTER_ADDR:
status = get_adapter_address();
break;
case HAL_PROP_ADAPTER_NAME:
status = get_adapter_name();
break;
case HAL_PROP_ADAPTER_UUIDS:
status = get_adapter_uuids();
break;
case HAL_PROP_ADAPTER_CLASS:
status = get_adapter_class();
break;
case HAL_PROP_ADAPTER_TYPE:
status = get_adapter_type();
break;
case HAL_PROP_ADAPTER_SERVICE_REC:
status = get_adapter_service_rec();
break;
case HAL_PROP_ADAPTER_SCAN_MODE:
status = get_adapter_scan_mode();
break;
case HAL_PROP_ADAPTER_BONDED_DEVICES:
status = get_adapter_bonded_devices();
break;
case HAL_PROP_ADAPTER_DISC_TIMEOUT:
status = get_adapter_discoverable_timeout();
break;
case HAL_PROP_ADAPTER_LOCAL_LE_FEAT:
status = get_adapter_le_features();
break;
default:
status = HAL_STATUS_FAILED;
break;
}
if (status != HAL_STATUS_SUCCESS)
error("Failed to get adapter property (type %u status %u)",
cmd->type, status);
ipc_send_rsp(hal_ipc, HAL_SERVICE_ID_BLUETOOTH, HAL_OP_GET_ADAPTER_PROP,
status);
}
static void get_adapter_properties(void)
{
uint8_t buf[IPC_MTU];
struct hal_ev_adapter_props_changed *ev = (void *) buf;
uint8_t bonded[g_slist_length(bonded_devices) * sizeof(bdaddr_t)];
uint128_t uuids[g_slist_length(adapter.uuids)];
uint8_t android_bdaddr[6];
uint8_t le_features[8];
uint8_t type, mode;
size_t size, i;
GSList *l;
size = sizeof(*ev);
ev->status = HAL_STATUS_SUCCESS;
ev->num_props = 0;
bdaddr2android(&adapter.bdaddr, &android_bdaddr);
size += fill_hal_prop(buf + size, HAL_PROP_ADAPTER_ADDR,
sizeof(android_bdaddr), android_bdaddr);
ev->num_props++;
if (adapter.name) {
size += fill_hal_prop(buf + size, HAL_PROP_ADAPTER_NAME,
strlen(adapter.name), adapter.name);
ev->num_props++;
}
size += fill_hal_prop(buf + size, HAL_PROP_ADAPTER_CLASS,
sizeof(adapter.dev_class), &adapter.dev_class);
ev->num_props++;
type = settings2type();
if (type) {
size += fill_hal_prop(buf + size, HAL_PROP_ADAPTER_TYPE,
sizeof(type), &type);
ev->num_props++;
}
mode = settings2scan_mode();
size += fill_hal_prop(buf + size, HAL_PROP_ADAPTER_SCAN_MODE,
sizeof(mode), &mode);
ev->num_props++;
size += fill_hal_prop(buf + size, HAL_PROP_ADAPTER_DISC_TIMEOUT,
sizeof(adapter.discoverable_timeout),
&adapter.discoverable_timeout);
ev->num_props++;
for (i = 0, l = bonded_devices; l; l = g_slist_next(l), i++) {
struct device *dev = l->data;
get_device_android_addr(dev, bonded + (i * sizeof(bdaddr_t)));
}
size += fill_hal_prop(buf + size, HAL_PROP_ADAPTER_BONDED_DEVICES,
sizeof(bonded), bonded);
ev->num_props++;
for (i = 0, l = adapter.uuids; l; l = g_slist_next(l), i++) {
uuid_t *uuid = l->data;
memcpy(&uuids[i], &uuid->value.uuid128, sizeof(uint128_t));
}
size += fill_hal_prop(buf + size, HAL_PROP_ADAPTER_UUIDS, sizeof(uuids),
uuids);
ev->num_props++;
prepare_le_features(le_features);
size += fill_hal_prop(buf + size, HAL_PROP_ADAPTER_LOCAL_LE_FEAT,
sizeof(le_features), le_features);
ev->num_props++;
ipc_send_notif(hal_ipc, HAL_SERVICE_ID_BLUETOOTH,
HAL_EV_ADAPTER_PROPS_CHANGED, size, buf);
}
static void cancel_pending_confirm_name(gpointer data, gpointer user_data)
{
struct device *dev = data;
mgmt_cancel(mgmt_if, dev->confirm_id);
dev->confirm_id = 0;
}
static bool stop_discovery(uint8_t type)
{
struct mgmt_cp_stop_discovery cp;
cp.type = get_supported_discovery_type() & type;
DBG("type=0x%x", cp.type);
if (cp.type == SCAN_TYPE_NONE)
return false;
/* Lets drop all confirm name request as we don't need it anymore */
g_slist_foreach(cached_devices, cancel_pending_confirm_name, NULL);
if (mgmt_send(mgmt_if, MGMT_OP_STOP_DISCOVERY, adapter.index,
sizeof(cp), &cp, NULL, NULL, NULL) > 0)
return true;
error("Failed to stop discovery");
return false;
}
struct adv_user_data {
bt_le_set_advertising_done cb;
void *user_data;
};
static void set_advertising_cb(uint8_t status, uint16_t length,
const void *param, void *user_data)
{
struct adv_user_data *data = user_data;
DBG("");
if (status)
error("Failed to set adverising %s (0x%02x))",
mgmt_errstr(status), status);
data->cb(status, data->user_data);
}
bool bt_le_set_advertising(bool advertising, bt_le_set_advertising_done cb,
void *user_data)
{
struct adv_user_data *data;
uint8_t adv = advertising ? 0x01 : 0x00;
data = new0(struct adv_user_data, 1);
data->cb = cb;
data->user_data = user_data;
if (mgmt_send(mgmt_if, MGMT_OP_SET_ADVERTISING, adapter.index,
sizeof(adv), &adv, set_advertising_cb, data, free) > 0)
return true;
error("Failed to set advertising");
free(data);
return false;
}
bool bt_le_register(bt_le_device_found cb)
{
if (gatt_device_found_cb)
return false;
gatt_device_found_cb = cb;
return true;
}
void bt_le_unregister(void)
{
gatt_device_found_cb = NULL;
}
bool bt_le_discovery_stop(bt_le_discovery_stopped cb)
{
if (!(adapter.current_settings & MGMT_SETTING_POWERED))
return false;
adapter.le_scanning = false;
if (adapter.cur_discovery_type != SCAN_TYPE_LE) {
if (cb)
cb();
return true;
}
if (!stop_discovery(SCAN_TYPE_LE))
return false;
gatt_discovery_stopped_cb = cb;
adapter.exp_discovery_type = SCAN_TYPE_NONE;
return true;
}
bool bt_le_discovery_start(void)
{
if (!(adapter.current_settings & MGMT_SETTING_POWERED))
return false;
adapter.le_scanning = true;
/*
* If core is discovering - just set expected next scan type.
* It will be triggered in case current scan session is almost done
* i.e. we missed LE phase in interleaved scan, or we're trying to
* connect to device that was already discovered.
*/
if (adapter.cur_discovery_type != SCAN_TYPE_NONE) {
adapter.exp_discovery_type = SCAN_TYPE_LE;
return true;
}
if (start_discovery(SCAN_TYPE_LE))
return true;
return false;
}
struct read_rssi_user_data {
bt_read_device_rssi_done cb;
void *user_data;
};
static void read_device_rssi_cb(uint8_t status, uint16_t length,
const void *param, void *user_data)
{
const struct mgmt_rp_get_conn_info *rp = param;
struct read_rssi_user_data *data = user_data;
DBG("");
if (status)
error("Failed to get conn info: %s (0x%02x))",
mgmt_errstr(status), status);
if (length < sizeof(*rp)) {
error("Wrong size of get conn info response");
return;
}
data->cb(status, &rp->addr.bdaddr, rp->rssi, data->user_data);
}
bool bt_read_device_rssi(const bdaddr_t *addr, bt_read_device_rssi_done cb,
void *user_data)
{
struct device *dev;
struct read_rssi_user_data *data;
struct mgmt_cp_get_conn_info cp;
dev = find_device(addr);
if (!dev)
return false;
memcpy(&cp.addr.bdaddr, addr, sizeof(cp.addr.bdaddr));
cp.addr.type = dev->bredr ? BDADDR_BREDR : dev->bdaddr_type;
data = new0(struct read_rssi_user_data, 1);
data->cb = cb;
data->user_data = user_data;
if (!mgmt_send(mgmt_if, MGMT_OP_GET_CONN_INFO, adapter.index,
sizeof(cp), &cp, read_device_rssi_cb, data, free)) {
free(data);
error("Failed to get conn info");
return false;
}
return true;
}
bool bt_get_csrk(const bdaddr_t *addr, bool local, uint8_t key[16],
uint32_t *sign_cnt, bool *authenticated)
{
struct device *dev;
dev = find_device(addr);
if (!dev)
return false;
if (local && dev->valid_local_csrk) {
if (key)
memcpy(key, dev->local_csrk, 16);
if (sign_cnt)
*sign_cnt = dev->local_sign_cnt;
if (authenticated)
*authenticated = dev->local_csrk_auth;
} else if (!local && dev->valid_remote_csrk) {
if (key)
memcpy(key, dev->remote_csrk, 16);
if (sign_cnt)
*sign_cnt = dev->remote_sign_cnt;
if (authenticated)
*authenticated = dev->remote_csrk_auth;
} else {
return false;
}
return true;
}
static void store_sign_counter(struct device *dev, bool local)
{
const char *sign_cnt_s;
uint32_t sign_cnt;
GKeyFile *key_file;
gsize length = 0;
char addr[18];
char *data;
key_file = g_key_file_new();
if (!g_key_file_load_from_file(key_file, DEVICES_FILE, 0, NULL)) {
g_key_file_free(key_file);
return;
}
ba2str(&dev->bdaddr, addr);
sign_cnt_s = local ? "LocalCSRKSignCounter" : "RemoteCSRKSignCounter";
sign_cnt = local ? dev->local_sign_cnt : dev->remote_sign_cnt;
g_key_file_set_integer(key_file, addr, sign_cnt_s, sign_cnt);
data = g_key_file_to_data(key_file, &length, NULL);
g_file_set_contents(DEVICES_FILE, data, length, NULL);
g_free(data);
g_key_file_free(key_file);
}
void bt_update_sign_counter(const bdaddr_t *addr, bool local, uint32_t val)
{
struct device *dev;
dev = find_device(addr);
if (!dev)
return;
if (local)
dev->local_sign_cnt = val;
else
dev->remote_sign_cnt = val;
store_sign_counter(dev, local);
}
static uint8_t set_adapter_scan_mode(const void *buf, uint16_t len)
{
const uint8_t *mode = buf;
bool conn, disc, cur_conn, cur_disc;
if (len != sizeof(*mode)) {
error("Invalid set scan mode size (%u bytes), terminating",
len);
raise(SIGTERM);
return HAL_STATUS_FAILED;
}
cur_conn = adapter.current_settings & MGMT_SETTING_CONNECTABLE;
cur_disc = adapter.current_settings & MGMT_SETTING_DISCOVERABLE;
DBG("connectable %u discoverable %d mode %u", cur_conn, cur_disc,
*mode);
switch (*mode) {
case HAL_ADAPTER_SCAN_MODE_NONE:
if (!cur_conn && !cur_disc)
goto done;
conn = false;
disc = false;
break;
case HAL_ADAPTER_SCAN_MODE_CONN:
if (cur_conn && !cur_disc)
goto done;
conn = true;
disc = false;
break;
case HAL_ADAPTER_SCAN_MODE_CONN_DISC:
if (cur_conn && cur_disc)
goto done;
conn = true;
disc = true;
break;
default:
return HAL_STATUS_FAILED;
}
if (cur_conn != conn) {
if (!set_mode(MGMT_OP_SET_CONNECTABLE, conn ? 0x01 : 0x00))
return HAL_STATUS_FAILED;
}
if (cur_disc != disc && conn) {
if (!set_discoverable(disc ? 0x01 : 0x00, 0))
return HAL_STATUS_FAILED;
}
return HAL_STATUS_SUCCESS;
done:
/* Android expects property changed callback */
scan_mode_changed();
return HAL_STATUS_SUCCESS;
}
static void handle_set_adapter_prop_cmd(const void *buf, uint16_t len)
{
const struct hal_cmd_set_adapter_prop *cmd = buf;
uint8_t status;
if (len != sizeof(*cmd) + cmd->len) {
error("Invalid set adapter prop cmd (0x%x), terminating",
cmd->type);
raise(SIGTERM);
return;
}
switch (cmd->type) {
case HAL_PROP_ADAPTER_SCAN_MODE:
status = set_adapter_scan_mode(cmd->val, cmd->len);
break;
case HAL_PROP_ADAPTER_NAME:
status = set_adapter_name(cmd->val, cmd->len);
break;
case HAL_PROP_ADAPTER_DISC_TIMEOUT:
status = set_adapter_discoverable_timeout(cmd->val, cmd->len);
break;
default:
DBG("Unhandled property type 0x%x", cmd->type);
status = HAL_STATUS_FAILED;
break;
}
if (status != HAL_STATUS_SUCCESS)
error("Failed to set adapter property (type %u status %u)",
cmd->type, status);
ipc_send_rsp(hal_ipc, HAL_SERVICE_ID_BLUETOOTH, HAL_OP_SET_ADAPTER_PROP,
status);
}
static void pair_device_complete(uint8_t status, uint16_t length,
const void *param, void *user_data)
{
const struct mgmt_rp_pair_device *rp = param;
struct device *dev;
DBG("status %u", status);
dev = find_device(&rp->addr.bdaddr);
if (!dev)
return;
/*
* Update pairing and paired status. Bonded status will be updated once
* any link key come
*/
update_device_state(dev, rp->addr.type, status_mgmt2hal(status), false,
!status, false);
if (status == MGMT_STATUS_SUCCESS)
queue_foreach(paired_cb_list, send_paired_notification, dev);
}
static uint8_t select_device_bearer(struct device *dev)
{
uint8_t res;
if (dev->bredr && dev->le) {
if (dev->le_seen > dev->bredr_seen)
res = dev->bdaddr_type;
else
res = BDADDR_BREDR;
} else {
res = dev->bredr ? BDADDR_BREDR : dev->bdaddr_type;
}
DBG("Selected bearer %d", res);
return res;
}
uint8_t bt_device_last_seen_bearer(const bdaddr_t *bdaddr)
{
struct device *dev;
dev = find_device(bdaddr);
if (!dev)
return BDADDR_BREDR;
return select_device_bearer(dev);
}
static void handle_create_bond_cmd(const void *buf, uint16_t len)
{
const struct hal_cmd_create_bond *cmd = buf;
struct device *dev;
uint8_t status;
struct mgmt_cp_pair_device cp;
dev = get_device_android(cmd->bdaddr);
cp.io_cap = DEFAULT_IO_CAPABILITY;
cp.addr.type = select_device_bearer(dev);
bacpy(&cp.addr.bdaddr, &dev->bdaddr);
/* TODO: Handle transport parameter */
if (cmd->transport > BT_TRANSPORT_LE) {
status = HAL_STATUS_INVALID;
goto fail;
}
if (device_is_paired(dev, cp.addr.type)) {
status = HAL_STATUS_FAILED;
goto fail;
}
if (mgmt_send(mgmt_if, MGMT_OP_PAIR_DEVICE, adapter.index, sizeof(cp),
&cp, pair_device_complete, NULL, NULL) == 0) {
status = HAL_STATUS_FAILED;
goto fail;
}
status = HAL_STATUS_SUCCESS;
update_device_state(dev, cp.addr.type, HAL_STATUS_SUCCESS, true, false,
false);
fail:
ipc_send_rsp(hal_ipc, HAL_SERVICE_ID_BLUETOOTH, HAL_OP_CREATE_BOND,
status);
}
static void handle_cancel_bond_cmd(const void *buf, uint16_t len)
{
const struct hal_cmd_cancel_bond *cmd = buf;
struct mgmt_addr_info cp;
struct device *dev;
uint8_t status;
dev = find_device_android(cmd->bdaddr);
if (!dev) {
status = HAL_STATUS_FAILED;
goto failed;
}
cp.type = select_device_bearer(dev);
bacpy(&cp.bdaddr, &dev->bdaddr);
if (mgmt_reply(mgmt_if, MGMT_OP_CANCEL_PAIR_DEVICE, adapter.index,
sizeof(cp), &cp, NULL, NULL, NULL) == 0) {
status = HAL_STATUS_FAILED;
goto failed;
}
status = HAL_STATUS_SUCCESS;
failed:
ipc_send_rsp(hal_ipc, HAL_SERVICE_ID_BLUETOOTH, HAL_OP_CANCEL_BOND,
status);
}
static void send_unpaired_notification(void *data, void *user_data)
{
bt_unpaired_device_cb cb = data;
struct mgmt_addr_info *addr = user_data;
cb(&addr->bdaddr);
}
static void unpair_device_complete(uint8_t status, uint16_t length,
const void *param, void *user_data)
{
const struct mgmt_rp_unpair_device *rp = param;
struct device *dev;
DBG("status %u", status);
if (status != MGMT_STATUS_SUCCESS && status != MGMT_STATUS_NOT_PAIRED)
return;
dev = find_device(&rp->addr.bdaddr);
if (!dev)
return;
update_device_state(dev, rp->addr.type, HAL_STATUS_SUCCESS, false,
false, false);
/* Cast rp->addr to (void *) since queue_foreach don't take const */
if (!dev->le_paired && !dev->bredr_paired)
queue_foreach(unpaired_cb_list, send_unpaired_notification,
(void *)&rp->addr);
}
static void handle_remove_bond_cmd(const void *buf, uint16_t len)
{
const struct hal_cmd_remove_bond *cmd = buf;
struct mgmt_cp_unpair_device cp;
struct device *dev;
uint8_t status;
dev = find_device_android(cmd->bdaddr);
if (!dev) {
status = HAL_STATUS_FAILED;
goto failed;
}
cp.disconnect = 1;
bacpy(&cp.addr.bdaddr, &dev->bdaddr);
if (dev->le_paired) {
cp.addr.type = dev->bdaddr_type;
if (mgmt_send(mgmt_if, MGMT_OP_UNPAIR_DEVICE, adapter.index,
sizeof(cp), &cp, unpair_device_complete,
NULL, NULL) == 0) {
status = HAL_STATUS_FAILED;
goto failed;
}
}
if (dev->bredr_paired) {
cp.addr.type = BDADDR_BREDR;
if (mgmt_send(mgmt_if, MGMT_OP_UNPAIR_DEVICE, adapter.index,
sizeof(cp), &cp, unpair_device_complete,
NULL, NULL) == 0) {
status = HAL_STATUS_FAILED;
goto failed;
}
}
status = HAL_STATUS_SUCCESS;
failed:
ipc_send_rsp(hal_ipc, HAL_SERVICE_ID_BLUETOOTH, HAL_OP_REMOVE_BOND,
status);
}
static void handle_pin_reply_cmd(const void *buf, uint16_t len)
{
const struct hal_cmd_pin_reply *cmd = buf;
uint8_t status;
bdaddr_t bdaddr;
char addr[18];
android2bdaddr(cmd->bdaddr, &bdaddr);
ba2str(&bdaddr, addr);
DBG("%s accept %u pin_len %u", addr, cmd->accept, cmd->pin_len);
if (!cmd->accept && cmd->pin_len) {
status = HAL_STATUS_INVALID;
goto failed;
}
if (cmd->accept) {
struct mgmt_cp_pin_code_reply rp;
memset(&rp, 0, sizeof(rp));
bacpy(&rp.addr.bdaddr, &bdaddr);
rp.addr.type = BDADDR_BREDR;
rp.pin_len = cmd->pin_len;
memcpy(rp.pin_code, cmd->pin_code, rp.pin_len);
if (mgmt_reply(mgmt_if, MGMT_OP_PIN_CODE_REPLY, adapter.index,
sizeof(rp), &rp, NULL, NULL, NULL) == 0) {
status = HAL_STATUS_FAILED;
goto failed;
}
} else {
struct mgmt_cp_pin_code_neg_reply rp;
bacpy(&rp.addr.bdaddr, &bdaddr);
rp.addr.type = BDADDR_BREDR;
if (mgmt_reply(mgmt_if, MGMT_OP_PIN_CODE_NEG_REPLY,
adapter.index, sizeof(rp), &rp,
NULL, NULL, NULL) == 0) {
status = HAL_STATUS_FAILED;
goto failed;
}
}
status = HAL_STATUS_SUCCESS;
failed:
ipc_send_rsp(hal_ipc, HAL_SERVICE_ID_BLUETOOTH, HAL_OP_PIN_REPLY,
status);
}
static uint8_t user_confirm_reply(const bdaddr_t *bdaddr, uint8_t type,
bool accept)
{
struct mgmt_addr_info cp;
uint16_t opcode;
if (accept)
opcode = MGMT_OP_USER_CONFIRM_REPLY;
else
opcode = MGMT_OP_USER_CONFIRM_NEG_REPLY;
bacpy(&cp.bdaddr, bdaddr);
cp.type = type;
if (mgmt_reply(mgmt_if, opcode, adapter.index, sizeof(cp), &cp,
NULL, NULL, NULL) > 0)
return HAL_STATUS_SUCCESS;
return HAL_STATUS_FAILED;
}
static uint8_t user_passkey_reply(const bdaddr_t *bdaddr, uint8_t type,
bool accept, uint32_t passkey)
{
unsigned int id;
if (accept) {
struct mgmt_cp_user_passkey_reply cp;
memset(&cp, 0, sizeof(cp));
bacpy(&cp.addr.bdaddr, bdaddr);
cp.addr.type = type;
cp.passkey = cpu_to_le32(passkey);
id = mgmt_reply(mgmt_if, MGMT_OP_USER_PASSKEY_REPLY,
adapter.index, sizeof(cp), &cp,
NULL, NULL, NULL);
} else {
struct mgmt_cp_user_passkey_neg_reply cp;
memset(&cp, 0, sizeof(cp));
bacpy(&cp.addr.bdaddr, bdaddr);
cp.addr.type = type;
id = mgmt_reply(mgmt_if, MGMT_OP_USER_PASSKEY_NEG_REPLY,
adapter.index, sizeof(cp), &cp,
NULL, NULL, NULL);
}
if (id == 0)
return HAL_STATUS_FAILED;
return HAL_STATUS_SUCCESS;
}
static void handle_ssp_reply_cmd(const void *buf, uint16_t len)
{
const struct hal_cmd_ssp_reply *cmd = buf;
struct device *dev;
uint8_t status;
char addr[18];
/* TODO should parameters sanity be verified here? */
dev = find_device_android(cmd->bdaddr);
if (!dev)
return;
ba2str(&dev->bdaddr, addr);
DBG("%s variant %u accept %u", addr, cmd->ssp_variant, cmd->accept);
switch (cmd->ssp_variant) {
case HAL_SSP_VARIANT_CONFIRM:
case HAL_SSP_VARIANT_CONSENT:
status = user_confirm_reply(&dev->bdaddr,
select_device_bearer(dev),
cmd->accept);
break;
case HAL_SSP_VARIANT_ENTRY:
status = user_passkey_reply(&dev->bdaddr,
select_device_bearer(dev),
cmd->accept, cmd->passkey);
break;
case HAL_SSP_VARIANT_NOTIF:
status = HAL_STATUS_SUCCESS;
break;
default:
status = HAL_STATUS_INVALID;
break;
}
ipc_send_rsp(hal_ipc, HAL_SERVICE_ID_BLUETOOTH, HAL_OP_SSP_REPLY,
status);
}
static void handle_get_remote_services_cmd(const void *buf, uint16_t len)
{
const struct hal_cmd_get_remote_services *cmd = buf;
uint8_t status;
bdaddr_t addr;
android2bdaddr(&cmd->bdaddr, &addr);
status = browse_remote_sdp(&addr);
ipc_send_rsp(hal_ipc, HAL_SERVICE_ID_BLUETOOTH,
HAL_OP_GET_REMOTE_SERVICES, status);
}
static uint8_t get_device_uuids(struct device *dev)
{
send_device_uuids_notif(dev);
return HAL_STATUS_SUCCESS;
}
static uint8_t get_device_class(struct device *dev)
{
send_device_property(dev, HAL_PROP_DEVICE_CLASS, sizeof(dev->class),
&dev->class);
return HAL_STATUS_SUCCESS;
}
static uint8_t get_device_type(struct device *dev)
{
uint8_t type = get_device_android_type(dev);
send_device_property(dev, HAL_PROP_DEVICE_TYPE, sizeof(type), &type);
return HAL_STATUS_SUCCESS;
}
static uint8_t get_device_service_rec(struct device *dev)
{
DBG("Not implemented");
/* TODO */
return HAL_STATUS_FAILED;
}
static uint8_t get_device_friendly_name(struct device *dev)
{
if (!dev->friendly_name)
return HAL_STATUS_FAILED;
send_device_property(dev, HAL_PROP_DEVICE_FRIENDLY_NAME,
strlen(dev->friendly_name), dev->friendly_name);
return HAL_STATUS_SUCCESS;
}
static uint8_t get_device_rssi(struct device *dev)
{
if (!dev->rssi)
return HAL_STATUS_FAILED;
send_device_property(dev, HAL_PROP_DEVICE_RSSI, sizeof(dev->rssi),
&dev->rssi);
return HAL_STATUS_SUCCESS;
}
static uint8_t get_device_version_info(struct device *dev)
{
DBG("Not implemented");
/* TODO */
return HAL_STATUS_FAILED;
}
static uint8_t get_device_timestamp(struct device *dev)
{
uint32_t timestamp;
timestamp = device_timestamp(dev);
send_device_property(dev, HAL_PROP_DEVICE_TIMESTAMP, sizeof(timestamp),
&timestamp);
return HAL_STATUS_SUCCESS;
}
static void get_remote_device_props(struct device *dev)
{
uint8_t buf[IPC_MTU];
struct hal_ev_remote_device_props *ev = (void *) buf;
uint128_t uuids[g_slist_length(dev->uuids)];
uint8_t android_type;
uint32_t timestamp;
size_t size, i;
GSList *l;
memset(buf, 0, sizeof(buf));
size = sizeof(*ev);
ev->status = HAL_STATUS_SUCCESS;
get_device_android_addr(dev, ev->bdaddr);
android_type = get_device_android_type(dev);
size += fill_hal_prop(buf + size, HAL_PROP_DEVICE_TYPE,
sizeof(android_type), &android_type);
ev->num_props++;
size += fill_hal_prop(buf + size, HAL_PROP_DEVICE_CLASS,
sizeof(dev->class), &dev->class);
ev->num_props++;
if (dev->rssi) {
size += fill_hal_prop(buf + size, HAL_PROP_DEVICE_RSSI,
sizeof(dev->rssi), &dev->rssi);
ev->num_props++;
}
size += fill_hal_prop(buf + size, HAL_PROP_DEVICE_NAME,
strlen(dev->name), dev->name);
ev->num_props++;
if (dev->friendly_name) {
size += fill_hal_prop(buf + size,
HAL_PROP_DEVICE_FRIENDLY_NAME,
strlen(dev->friendly_name),
dev->friendly_name);
ev->num_props++;
}
for (i = 0, l = dev->uuids; l; l = g_slist_next(l), i++)
memcpy(&uuids[i], l->data, sizeof(uint128_t));
size += fill_hal_prop(buf + size, HAL_PROP_DEVICE_UUIDS, sizeof(uuids),
uuids);
ev->num_props++;
timestamp = get_device_timestamp(dev);
size += fill_hal_prop(buf + size, HAL_PROP_DEVICE_TIMESTAMP,
sizeof(timestamp), &timestamp);
ev->num_props++;
ipc_send_notif(hal_ipc, HAL_SERVICE_ID_BLUETOOTH,
HAL_EV_REMOTE_DEVICE_PROPS, size, buf);
}
static void send_bonded_devices_props(void)
{
GSList *l;
for (l = bonded_devices; l; l = g_slist_next(l)) {
struct device *dev = l->data;
get_remote_device_props(dev);
}
}
static void handle_enable_cmd(const void *buf, uint16_t len)
{
uint8_t status;
/*
* Framework expects all properties to be emitted while enabling
* adapter
*/
get_adapter_properties();
/* Sent also properties of bonded devices */
send_bonded_devices_props();
if (adapter.current_settings & MGMT_SETTING_POWERED) {
status = HAL_STATUS_SUCCESS;
goto reply;
}
if (!set_mode(MGMT_OP_SET_POWERED, 0x01)) {
status = HAL_STATUS_FAILED;
goto reply;
}
status = HAL_STATUS_SUCCESS;
reply:
ipc_send_rsp(hal_ipc, HAL_SERVICE_ID_BLUETOOTH, HAL_OP_ENABLE, status);
}
static void handle_disable_cmd(const void *buf, uint16_t len)
{
uint8_t status;
if (!(adapter.current_settings & MGMT_SETTING_POWERED)) {
status = HAL_STATUS_SUCCESS;
goto reply;
}
/* Cancel all pending requests. Need it in case of ongoing paring */
mgmt_cancel_index(mgmt_if, adapter.index);
if (!set_mode(MGMT_OP_SET_POWERED, 0x00)) {
status = HAL_STATUS_FAILED;
goto reply;
}
status = HAL_STATUS_SUCCESS;
reply:
ipc_send_rsp(hal_ipc, HAL_SERVICE_ID_BLUETOOTH, HAL_OP_DISABLE, status);
}
static void handle_get_adapter_props_cmd(const void *buf, uint16_t len)
{
get_adapter_properties();
ipc_send_rsp(hal_ipc, HAL_SERVICE_ID_BLUETOOTH,
HAL_OP_GET_ADAPTER_PROPS, HAL_STATUS_SUCCESS);
}
static void handle_get_remote_device_props_cmd(const void *buf, uint16_t len)
{
const struct hal_cmd_get_remote_device_props *cmd = buf;
struct device *dev;
uint8_t status;
dev = find_device_android(cmd->bdaddr);
if (!dev) {
status = HAL_STATUS_INVALID;
goto failed;
}
get_remote_device_props(dev);
status = HAL_STATUS_SUCCESS;
failed:
ipc_send_rsp(hal_ipc, HAL_SERVICE_ID_BLUETOOTH,
HAL_OP_GET_REMOTE_DEVICE_PROPS, status);
}
static void handle_get_remote_device_prop_cmd(const void *buf, uint16_t len)
{
const struct hal_cmd_get_remote_device_prop *cmd = buf;
struct device *dev;
uint8_t status;
dev = find_device_android(cmd->bdaddr);
if (!dev) {
status = HAL_STATUS_INVALID;
goto failed;
}
switch (cmd->type) {
case HAL_PROP_DEVICE_NAME:
status = get_device_name(dev);
break;
case HAL_PROP_DEVICE_UUIDS:
status = get_device_uuids(dev);
break;
case HAL_PROP_DEVICE_CLASS:
status = get_device_class(dev);
break;
case HAL_PROP_DEVICE_TYPE:
status = get_device_type(dev);
break;
case HAL_PROP_DEVICE_SERVICE_REC:
status = get_device_service_rec(dev);
break;
case HAL_PROP_DEVICE_FRIENDLY_NAME:
status = get_device_friendly_name(dev);
break;
case HAL_PROP_DEVICE_RSSI:
status = get_device_rssi(dev);
break;
case HAL_PROP_DEVICE_VERSION_INFO:
status = get_device_version_info(dev);
break;
case HAL_PROP_DEVICE_TIMESTAMP:
status = get_device_timestamp(dev);
break;
default:
status = HAL_STATUS_FAILED;
break;
}
if (status != HAL_STATUS_SUCCESS)
error("Failed to get device property (type %u status %u)",
cmd->type, status);
failed:
ipc_send_rsp(hal_ipc, HAL_SERVICE_ID_BLUETOOTH,
HAL_OP_GET_REMOTE_DEVICE_PROP, status);
}
static uint8_t set_device_friendly_name(struct device *dev, const uint8_t *val,
uint16_t len)
{
DBG("");
g_free(dev->friendly_name);
dev->friendly_name = g_strndup((const char *) val, len);
if (dev->bredr_paired || dev->le_paired)
store_device_info(dev, DEVICES_FILE);
else
store_device_info(dev, CACHE_FILE);
return HAL_STATUS_SUCCESS;
}
static uint8_t set_device_version_info(struct device *dev)
{
DBG("Not implemented");
/* TODO */
return HAL_STATUS_FAILED;
}
static void handle_set_remote_device_prop_cmd(const void *buf, uint16_t len)
{
const struct hal_cmd_set_remote_device_prop *cmd = buf;
struct device *dev;
uint8_t status;
if (len != sizeof(*cmd) + cmd->len) {
error("Invalid set remote device prop cmd (0x%x), terminating",
cmd->type);
raise(SIGTERM);
return;
}
dev = find_device_android(cmd->bdaddr);
if (!dev) {
status = HAL_STATUS_INVALID;
goto failed;
}
switch (cmd->type) {
case HAL_PROP_DEVICE_FRIENDLY_NAME:
status = set_device_friendly_name(dev, cmd->val, cmd->len);
break;
case HAL_PROP_DEVICE_VERSION_INFO:
status = set_device_version_info(dev);
break;
default:
status = HAL_STATUS_FAILED;
break;
}
if (status != HAL_STATUS_SUCCESS)
error("Failed to set device property (type %u status %u)",
cmd->type, status);
failed:
ipc_send_rsp(hal_ipc, HAL_SERVICE_ID_BLUETOOTH,
HAL_OP_SET_REMOTE_DEVICE_PROP, status);
}
static void handle_get_remote_service_rec_cmd(const void *buf, uint16_t len)
{
const struct hal_cmd_get_remote_service_rec *cmd = buf;
uint8_t status;
bdaddr_t addr;
android2bdaddr(&cmd->bdaddr, &addr);
status = find_remote_sdp_rec(&addr, cmd->uuid);
ipc_send_rsp(hal_ipc, HAL_SERVICE_ID_BLUETOOTH,
HAL_OP_GET_REMOTE_SERVICE_REC, status);
}
static void handle_start_discovery_cmd(const void *buf, uint16_t len)
{
uint8_t status;
if (!(adapter.current_settings & MGMT_SETTING_POWERED)) {
status = HAL_STATUS_NOT_READY;
goto failed;
}
switch (adapter.cur_discovery_type) {
case SCAN_TYPE_DUAL:
case SCAN_TYPE_BREDR:
break;
case SCAN_TYPE_NONE:
if (!start_discovery(SCAN_TYPE_DUAL)) {
status = HAL_STATUS_FAILED;
goto failed;
}
break;
case SCAN_TYPE_LE:
if (get_supported_discovery_type() == SCAN_TYPE_LE)
break;
if (!stop_discovery(SCAN_TYPE_LE)) {
status = HAL_STATUS_FAILED;
goto failed;
}
adapter.exp_discovery_type = SCAN_TYPE_DUAL;
break;
}
status = HAL_STATUS_SUCCESS;
failed:
ipc_send_rsp(hal_ipc, HAL_SERVICE_ID_BLUETOOTH, HAL_OP_START_DISCOVERY,
status);
}
static void handle_cancel_discovery_cmd(const void *buf, uint16_t len)
{
uint8_t status;
if (!(adapter.current_settings & MGMT_SETTING_POWERED)) {
status = HAL_STATUS_NOT_READY;
goto failed;
}
switch (adapter.cur_discovery_type) {
case SCAN_TYPE_NONE:
break;
case SCAN_TYPE_LE:
if (get_supported_discovery_type() != SCAN_TYPE_LE)
break;
if (adapter.exp_discovery_type == SCAN_TYPE_LE) {
status = HAL_STATUS_BUSY;
goto failed;
}
if (!stop_discovery(SCAN_TYPE_LE)) {
status = HAL_STATUS_FAILED;
goto failed;
}
break;
case SCAN_TYPE_DUAL:
case SCAN_TYPE_BREDR:
if (!stop_discovery(SCAN_TYPE_DUAL)) {
status = HAL_STATUS_FAILED;
goto failed;
}
if (adapter.exp_discovery_type != SCAN_TYPE_LE)
adapter.exp_discovery_type = SCAN_TYPE_NONE;
break;
}
status = HAL_STATUS_SUCCESS;
failed:
ipc_send_rsp(hal_ipc, HAL_SERVICE_ID_BLUETOOTH, HAL_OP_CANCEL_DISCOVERY,
status);
}
static void handle_dut_mode_conf_cmd(const void *buf, uint16_t len)
{
const struct hal_cmd_dut_mode_conf *cmd = buf;
char path[FILENAME_MAX];
uint8_t status;
int fd, ret;
DBG("enable %u", cmd->enable);
snprintf(path, sizeof(path), DUT_MODE_FILE, adapter.index);
fd = open(path, O_WRONLY);
if (fd < 0) {
status = HAL_STATUS_FAILED;
goto failed;
}
if (cmd->enable)
ret = write(fd, "1", sizeof("1"));
else
ret = write(fd, "0", sizeof("0"));
if (ret < 0)
status = HAL_STATUS_FAILED;
else
status = HAL_STATUS_SUCCESS;
close(fd);
failed:
ipc_send_rsp(hal_ipc, HAL_SERVICE_ID_BLUETOOTH, HAL_OP_DUT_MODE_CONF,
status);
}
static void handle_dut_mode_send_cmd(const void *buf, uint16_t len)
{
const struct hal_cmd_dut_mode_send *cmd = buf;
if (len != sizeof(*cmd) + cmd->len) {
error("Invalid dut mode send cmd, terminating");
raise(SIGTERM);
return;
}
error("dut_mode_send not supported (cmd opcode %u)", cmd->opcode);
/* TODO */
ipc_send_rsp(hal_ipc, HAL_SERVICE_ID_BLUETOOTH, HAL_OP_DUT_MODE_SEND,
HAL_STATUS_FAILED);
}
static void handle_le_test_mode_cmd(const void *buf, uint16_t len)
{
const struct hal_cmd_le_test_mode *cmd = buf;
if (len != sizeof(*cmd) + cmd->len) {
error("Invalid le test mode cmd, terminating");
raise(SIGTERM);
return;
}
error("le_test_mode not supported (cmd opcode %u)", cmd->opcode);
/* TODO */
ipc_send_rsp(hal_ipc, HAL_SERVICE_ID_BLUETOOTH, HAL_OP_LE_TEST_MODE,
HAL_STATUS_FAILED);
}
static void handle_get_connection_state(const void *buf, uint16_t len)
{
const struct hal_cmd_get_connection_state *cmd = buf;
struct hal_rsp_get_connection_state rsp;
struct device *dev;
char address[18];
bdaddr_t bdaddr;
android2bdaddr(cmd->bdaddr, &bdaddr);
ba2str(&bdaddr, address);
dev = find_device_android(cmd->bdaddr);
if (dev && dev->connected)
rsp.connection_state = 1;
else
rsp.connection_state = 0;
DBG("%s %u", address, rsp.connection_state);
ipc_send_rsp_full(hal_ipc, HAL_SERVICE_ID_BLUETOOTH,
HAL_OP_GET_CONNECTION_STATE, sizeof(rsp), &rsp,
-1);
}
static void handle_read_energy_info(const void *buf, uint16_t len)
{
DBG("");
/* TODO */
ipc_send_rsp(hal_ipc, HAL_SERVICE_ID_BLUETOOTH, HAL_OP_READ_ENERGY_INFO,
HAL_STATUS_UNSUPPORTED);
}
static const struct ipc_handler cmd_handlers[] = {
/* HAL_OP_ENABLE */
{ handle_enable_cmd, false, 0 },
/* HAL_OP_DISABLE */
{ handle_disable_cmd, false, 0 },
/* HAL_OP_GET_ADAPTER_PROPS */
{ handle_get_adapter_props_cmd, false, 0 },
/* HAL_OP_GET_ADAPTER_PROP */
{ handle_get_adapter_prop_cmd, false,
sizeof(struct hal_cmd_get_adapter_prop) },
/* HAL_OP_SET_ADAPTER_PROP */
{ handle_set_adapter_prop_cmd, true,
sizeof(struct hal_cmd_set_adapter_prop) },
/* HAL_OP_GET_REMOTE_DEVICE_PROPS */
{ handle_get_remote_device_props_cmd, false,
sizeof(struct hal_cmd_get_remote_device_props) },
/* HAL_OP_GET_REMOTE_DEVICE_PROP */
{ handle_get_remote_device_prop_cmd, false,
sizeof(struct hal_cmd_get_remote_device_prop) },
/* HAL_OP_SET_REMOTE_DEVICE_PROP */
{ handle_set_remote_device_prop_cmd, true,
sizeof(struct hal_cmd_set_remote_device_prop) },
/* HAL_OP_GET_REMOTE_SERVICE_REC */
{ handle_get_remote_service_rec_cmd, false,
sizeof(struct hal_cmd_get_remote_service_rec) },
/* HAL_OP_GET_REMOTE_SERVICES */
{ handle_get_remote_services_cmd, false,
sizeof(struct hal_cmd_get_remote_services) },
/* HAL_OP_START_DISCOVERY */
{ handle_start_discovery_cmd, false, 0 },
/* HAL_OP_CANCEL_DISCOVERY */
{ handle_cancel_discovery_cmd, false, 0 },
/* HAL_OP_CREATE_BOND */
{ handle_create_bond_cmd, false, sizeof(struct hal_cmd_create_bond) },
/* HAL_OP_REMOVE_BOND */
{ handle_remove_bond_cmd, false, sizeof(struct hal_cmd_remove_bond) },
/* HAL_OP_CANCEL_BOND */
{handle_cancel_bond_cmd, false, sizeof(struct hal_cmd_cancel_bond) },
/* HAL_OP_PIN_REPLY */
{ handle_pin_reply_cmd, false, sizeof(struct hal_cmd_pin_reply) },
/* HAL_OP_SSP_REPLY */
{ handle_ssp_reply_cmd, false, sizeof(struct hal_cmd_ssp_reply) },
/* HAL_OP_DUT_MODE_CONF */
{ handle_dut_mode_conf_cmd, false,
sizeof(struct hal_cmd_dut_mode_conf) },
/* HAL_OP_DUT_MODE_SEND */
{ handle_dut_mode_send_cmd, true,
sizeof(struct hal_cmd_dut_mode_send) },
/* HAL_OP_LE_TEST_MODE */
{ handle_le_test_mode_cmd, true, sizeof(struct hal_cmd_le_test_mode) },
/* HAL_OP_GET_CONNECTION_STATE */
{ handle_get_connection_state, false,
sizeof(struct hal_cmd_get_connection_state) },
/* HAL_OP_READ_ENERGY_INFO */
{ handle_read_energy_info, false, 0 },
};
bool bt_bluetooth_register(struct ipc *ipc, uint8_t mode)
{
uint32_t missing_settings;
DBG("mode 0x%x", mode);
unpaired_cb_list = queue_new();
paired_cb_list = queue_new();
missing_settings = adapter.current_settings ^
adapter.supported_settings;
switch (mode) {
case HAL_MODE_DEFAULT:
if (missing_settings & MGMT_SETTING_BREDR)
set_mode(MGMT_OP_SET_BREDR, 0x01);
if (missing_settings & MGMT_SETTING_LE)
set_mode(MGMT_OP_SET_LE, 0x01);
break;
case HAL_MODE_LE:
/* Fail if controller does not support LE */
if (!(adapter.supported_settings & MGMT_SETTING_LE)) {
error("LE Mode not supported by controller");
goto failed;
}
/* If LE it is not yet enabled then enable it */
if (!(adapter.current_settings & MGMT_SETTING_LE))
set_mode(MGMT_OP_SET_LE, 0x01);
/* Disable BR/EDR if it is enabled */
if (adapter.current_settings & MGMT_SETTING_BREDR)
set_mode(MGMT_OP_SET_BREDR, 0x00);
break;
case HAL_MODE_BREDR:
/* Fail if controller does not support BR/EDR */
if (!(adapter.supported_settings & MGMT_SETTING_BREDR)) {
error("BR/EDR Mode not supported");
goto failed;
}
/* Enable BR/EDR if it is not enabled */
if (missing_settings & MGMT_SETTING_BREDR)
set_mode(MGMT_OP_SET_BREDR, 0x01);
/*
* According to Core Spec 4.0 host should not disable LE in
* controller if it was enabled (Vol 2. Part E. 7.3.79).
* Core Spec 4.1 removed this limitation and chips seem to be
* handling this just fine anyway.
*/
if (adapter.current_settings & MGMT_SETTING_LE)
set_mode(MGMT_OP_SET_LE, 0x00);
break;
default:
error("Unknown mode 0x%x", mode);
goto failed;
}
/* Requested mode is set now, let's enable secure connection */
if (missing_settings & MGMT_SETTING_SECURE_CONN)
set_mode(MGMT_OP_SET_SECURE_CONN, 0x01);
/* Set initial default name */
if (!adapter.name) {
adapter.name = g_strdup(bt_config_get_model());
set_adapter_name((uint8_t *)adapter.name, strlen(adapter.name));
}
hal_ipc = ipc;
ipc_register(hal_ipc, HAL_SERVICE_ID_BLUETOOTH, cmd_handlers,
G_N_ELEMENTS(cmd_handlers));
return true;
failed:
queue_destroy(unpaired_cb_list, NULL);
unpaired_cb_list = NULL;
queue_destroy(paired_cb_list, NULL);
paired_cb_list = NULL;
return false;
}
void bt_bluetooth_unregister(void)
{
DBG("");
g_slist_free_full(bonded_devices, (GDestroyNotify) free_device);
bonded_devices = NULL;
g_slist_free_full(cached_devices, (GDestroyNotify) free_device);
cached_devices = NULL;
ipc_unregister(hal_ipc, HAL_SERVICE_ID_CORE);
hal_ipc = NULL;
queue_destroy(unpaired_cb_list, NULL);
unpaired_cb_list = NULL;
queue_destroy(paired_cb_list, NULL);
paired_cb_list = NULL;
}