bluez/mesh/net.c
Inga Stotland a38796b18d mesh: Add start up management command chain
This allows co-existense of meshd and bluetoothd. meshd will
automatically take control of the first available LE-capable
controller that is powered down.
2018-09-06 12:38:17 -07:00

4188 lines
96 KiB
C

/*
*
* BlueZ - Bluetooth protocol stack for Linux
*
* Copyright (C) 2018 Intel Corporation. All rights reserved.
*
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <sys/time.h>
#include <ell/ell.h>
#include "mesh/mesh-defs.h"
#include "mesh/util.h"
#include "mesh/display.h"
#include "mesh/crypto.h"
#include "mesh/mesh.h"
#include "mesh/node.h"
#include "mesh/net.h"
#include "mesh/mesh-io.h"
#include "mesh/friend.h"
#include "mesh/storage.h"
#include "mesh/model.h"
#include "mesh/appkey.h"
#include "mesh/prov.h"
#include "mesh/provision.h"
#define abs_diff(a, b) ((a) > (b) ? (a) - (b) : (b) - (a))
#define IV_IDX_DIFF_RANGE 42
/* #define IV_IDX_UPD_MIN (60) 1 minute for Testing */
#define IV_IDX_UPD_MIN (60 * 60 * 96) /* 96 Hours - per Spec */
#define IV_IDX_UPD_HOLD (IV_IDX_UPD_MIN/2)
#define IV_IDX_UPD_MAX (IV_IDX_UPD_MIN + IV_IDX_UPD_HOLD)
#define iv_is_updating(net) ((net)->iv_upd_state == IV_UPD_UPDATING)
#define IV_UPDATE_SEQ_TRIGGER 0x800000 /* Half of Seq-Nums expended */
#define SEG_TO 2
#define MSG_TO 60
#define DEFAULT_MIN_DELAY 0
#define DEFAULT_MAX_DELAY 25
#define DEFAULT_TRANSMIT_COUNT 1
#define DEFAULT_TRANSMIT_INTERVAL 100
#define BEACON_TYPE_SNB 0x01
#define BEACON_INTERVAL_MIN 10
#define BEACON_INTERVAL_MAX 600
#define SAR_KEY(src, seq0) ((((uint32_t)(seq0)) << 16) | (src))
enum _iv_upd_state {
/* Allows acceptance of any iv_index secure net beacon */
IV_UPD_INIT,
/* Normal, can transition, accept current or old */
IV_UPD_NORMAL,
/* Updating proc running, we use old, accept old or new */
IV_UPD_UPDATING,
/* Normal, can *not* transition, accept current or old iv_index */
IV_UPD_NORMAL_HOLD,
};
struct net_key {
struct mesh_key_set key_set;
unsigned int beacon_id;
uint8_t key[16];
uint8_t beacon_key[16];
uint8_t network_id[8];
};
struct mesh_beacon {
struct l_timeout *timeout;
uint32_t ts;
uint16_t observe_period;
uint16_t observed;
uint16_t expected;
uint8_t half_period;
uint8_t beacon[23];
};
struct mesh_subnet {
struct mesh_net *net;
uint16_t idx;
struct net_key *tx;
struct net_key current;
struct net_key updated;
struct mesh_beacon snb;
uint8_t key_refresh;
uint8_t kr_phase;
};
struct mesh_net {
int ref_count;
struct mesh_io *io;
struct mesh_node *local_node;
struct mesh_prov *prov;
void *jconfig_local;
const char *cfg_file;
struct l_queue *app_keys;
unsigned int pkt_id;
unsigned int bea_id;
unsigned int beacon_id;
unsigned int key_id_next;
unsigned int sar_id_next;
bool friend_enable;
bool beacon_enable;
bool proxy_enable;
bool provisioner;
bool provisioned;
bool friend_seq;
struct l_timeout *iv_update_timeout;
enum _iv_upd_state iv_upd_state;
bool iv_update;
uint32_t instant; /* Controller Instant of recent Rx */
uint32_t iv_index;
uint32_t seq_num;
uint32_t cached_seq_num;
uint16_t crpl;
uint16_t src_addr;
uint16_t last_addr;
uint16_t friend_addr;
uint16_t tx_interval;
uint16_t tx_cnt;
uint8_t chan; /* Channel of recent Rx */
uint8_t default_ttl;
uint8_t tid;
uint8_t window_accuracy;
struct {
bool enable;
uint16_t interval;
uint8_t count;
} relay;
struct mesh_net_heartbeat heartbeat;
struct l_queue *subnets;
struct l_queue *msg_cache;
struct l_queue *sar_in;
struct l_queue *sar_out;
struct l_queue *frnd_msgs;
struct l_queue *friends;
struct l_queue *destinations;
struct l_queue *fast_cache;
struct l_queue *key_sets;
uint8_t prov_priv_key[32];
/* Unprovisioned Identity */
char id_name[20];
uint8_t id_uuid[16];
/* Provisioner: unicast address range */
struct mesh_net_addr_range prov_uni_addr;
/* Test Data */
uint8_t prov_rand[16];
uint8_t test_bd_addr[6];
struct mesh_net_prov_caps prov_caps;
bool test_mode;
};
struct mesh_msg {
uint16_t src;
uint32_t seq;
uint32_t mic;
};
struct mesh_sar {
unsigned int id;
struct l_timeout *seg_timeout;
struct l_timeout *msg_timeout;
mesh_net_status_func_t status_func;
void *user_data;
uint32_t flags;
uint32_t last_nak;
uint32_t iv_index;
uint32_t seqAuth;
uint16_t seqZero;
uint16_t app_idx;
uint16_t src;
uint16_t remote;
uint16_t len;
bool szmic;
bool frnd;
bool frnd_cred;
uint8_t ttl;
uint8_t last_seg;
uint8_t key_id;
uint8_t buf[4]; /* Large enough for ACK-Flags and MIC */
};
struct mesh_destination {
uint16_t dst;
uint16_t ref_cnt;
};
struct msg_rx {
const uint8_t *data;
uint32_t iv_index;
uint32_t seq;
uint16_t src;
uint16_t dst;
uint16_t size;
uint8_t tc;
bool done;
bool szmic;
union {
struct {
uint16_t app_idx;
uint8_t key_id;
} m;
struct {
uint16_t seq0;
} a;
struct {
uint8_t opcode;
} c;
} u;
};
struct net_decode {
struct mesh_net *net;
struct mesh_friend *frnd;
struct mesh_key_set *key_set;
uint8_t *packet;
uint32_t iv_index;
uint8_t size;
uint8_t nid;
bool proxy;
};
static inline struct mesh_subnet *get_primary_subnet(struct mesh_net *net)
{
return l_queue_peek_head(net->subnets);
}
static bool match_key_index(const void *a, const void *b)
{
const struct mesh_subnet *subnet = a;
uint16_t idx = L_PTR_TO_UINT(b);
return subnet->idx == idx;
}
static bool match_key_set(const void *a, const void *b)
{
const struct mesh_subnet *subnet = a;
const struct mesh_key_set *key_set = b;
return (key_set == &subnet->current.key_set) ||
(key_set == &subnet->updated.key_set);
}
static bool match_network_id(const void *a, const void *b)
{
const struct mesh_subnet *subnet = a;
const uint8_t *network_id = b;
return ((memcmp(subnet->current.network_id, network_id, 8) == 0) ||
(memcmp(subnet->updated.network_id, network_id, 8) == 0));
}
static void idle_mesh_heartbeat_send(void *net)
{
mesh_net_heartbeat_send(net);
}
static void trigger_heartbeat(struct mesh_net *net, uint16_t feature,
bool in_use)
{
struct mesh_net_heartbeat *hb = &net->heartbeat;
l_info("%s: %4.4x --> %d", __func__, feature, in_use);
if (in_use) {
if (net->heartbeat.features & feature)
return; /* no change */
hb->features |= feature;
} else {
if (!(hb->features & feature))
return; /* no change */
hb->features &= ~feature;
}
if (!(hb->pub_features & feature))
return; /* not interested in this feature */
l_idle_oneshot(idle_mesh_heartbeat_send, net, NULL);
}
static bool match_by_friend(const void *a, const void *b)
{
const struct mesh_friend *frnd = a;
uint16_t dst = L_PTR_TO_UINT(b);
return frnd->dst == dst;
}
static void free_friend_internals(struct mesh_friend *frnd)
{
if (frnd->pkt_cache)
l_queue_destroy(frnd->pkt_cache, l_free);
if (frnd->grp_list)
l_free(frnd->grp_list);
frnd->pkt_cache = NULL;
frnd->grp_list = NULL;
mesh_net_remove_keyset(frnd->net, &frnd->key_set);
mesh_net_remove_keyset(frnd->net, &frnd->new_key_set);
}
static void frnd_kr_phase1(void *a, void *b)
{
struct mesh_friend *frnd = a;
const uint8_t *key = b;
uint8_t p[9] = {0x01};
l_put_be16(frnd->dst, p + 1);
l_put_be16(frnd->net->src_addr, p + 3);
l_put_be16(frnd->lp_cnt, p + 5);
l_put_be16(frnd->fn_cnt, p + 7);
mesh_crypto_k2(key, p, sizeof(p), &frnd->new_key_set.nid,
frnd->new_key_set.enc_key,
frnd->new_key_set.privacy_key);
mesh_net_add_keyset(frnd->net, &frnd->new_key_set);
l_info("Add New KeySet %2.2x for %4.4x",
frnd->new_key_set.nid, frnd->dst);
l_info("Outgoing with %2.2x", frnd->key_set.nid);
}
static void frnd_kr_phase2(void *a, void *b)
{
struct mesh_friend *frnd = a;
/*
* I think that a Friend should use Old Key as long as possible
* Because a Friend Node will enter Phase 3 before it's LPN.
* Alternatively, the FN could keep the Old Friend Keys until it
* receives it's first Poll using the new keys (?)
*/
l_info("Use Both KeySet %2.2x && %2.2x for %4.4x",
frnd->key_set.nid, frnd->new_key_set.nid, frnd->dst);
}
static void frnd_kr_phase3(void *a, void *b)
{
struct mesh_friend *frnd = a;
struct mesh_net *net = b;
l_info("Replace KeySet %2.2x with %2.2x for %4.4x",
frnd->key_set.nid, frnd->new_key_set.nid, frnd->dst);
frnd->key_set = frnd->new_key_set;
mesh_net_remove_keyset(net, &frnd->new_key_set);
frnd->new_key_set.nid = 0xff;
}
/* TODO: add net key idx? For now, use primary net key */
struct mesh_friend *mesh_friend_new(struct mesh_net *net, uint16_t dst,
uint8_t ele_cnt, uint8_t frd,
uint8_t frw, uint32_t fpt,
uint16_t fn_cnt, uint16_t lp_cnt)
{
struct mesh_subnet *subnet;
uint8_t p[9] = {0x01};
struct mesh_friend *frnd = l_queue_find(net->friends,
match_by_friend, L_UINT_TO_PTR(dst));
if (frnd) {
/* Kill all timers and empty cache for this friend */
free_friend_internals(frnd);
l_timeout_remove(frnd->timeout);
frnd->timeout = NULL;
} else {
frnd = l_new(struct mesh_friend, 1);
l_queue_push_head(net->friends, frnd);
}
/* add _k2 */
frnd->net = net;
frnd->dst = dst;
frnd->frd = frd;
frnd->frw = frw;
frnd->fn_cnt = fn_cnt;
frnd->lp_cnt = lp_cnt;
frnd->poll_timeout = fpt;
frnd->ele_cnt = ele_cnt;
frnd->pkt_cache = l_queue_new();
frnd->new_key_set.nid = NET_NID_INVALID;
l_put_be16(dst, p + 1);
l_put_be16(net->src_addr, p + 3);
l_put_be16(lp_cnt, p + 5);
l_put_be16(fn_cnt, p + 7);
subnet = get_primary_subnet(net);
/* TODO: the primary key must be present, do we need to add check?. */
mesh_crypto_k2(subnet->current.key, p, sizeof(p),
&frnd->key_set.nid,
frnd->key_set.enc_key,
frnd->key_set.privacy_key);
frnd->key_set.frnd = true;
mesh_net_add_keyset(net, &frnd->key_set);
if (subnet->updated.key_set.nid == NET_NID_INVALID)
return frnd;
mesh_crypto_k2(subnet->updated.key, p, sizeof(p),
&frnd->new_key_set.nid,
frnd->new_key_set.enc_key,
frnd->new_key_set.privacy_key);
frnd->new_key_set.frnd = true;
mesh_net_add_keyset(net, &frnd->new_key_set);
return frnd;
}
void mesh_friend_free(void *data)
{
struct mesh_friend *frnd = data;
free_friend_internals(frnd);
l_timeout_remove(frnd->timeout);
l_free(frnd);
}
bool mesh_friend_clear(struct mesh_net *net, struct mesh_friend *frnd)
{
bool removed = l_queue_remove(net->friends, frnd);
free_friend_internals(frnd);
return removed;
}
bool mesh_net_add_keyset(struct mesh_net *net, struct mesh_key_set *key_set)
{
if (!net)
return false;
l_info("Add KEY_SET %2.2x (%d) %p",
key_set->nid, key_set->frnd, key_set);
return l_queue_push_tail(net->key_sets, key_set);
}
bool mesh_net_remove_keyset(struct mesh_net *net, struct mesh_key_set *key_set)
{
if (!net || !net->key_sets)
return false;
l_info("DEL KEY_SET %2.2x (%d) %p",
key_set->nid, key_set->frnd, key_set);
return l_queue_remove(net->key_sets, key_set);
}
void mesh_friend_sub_add(struct mesh_net *net, uint16_t lpn, uint8_t ele_cnt,
uint8_t grp_cnt,
const uint8_t *list)
{
uint16_t *new_list;
uint16_t *grp_list;
struct mesh_friend *frnd = l_queue_find(net->friends,
match_by_friend,
L_UINT_TO_PTR(lpn));
if (!frnd)
return;
new_list = l_malloc((grp_cnt + frnd->grp_cnt) * sizeof(uint16_t));
grp_list = frnd->grp_list;
if (grp_list && frnd->grp_cnt)
memcpy(new_list, grp_list, frnd->grp_cnt * sizeof(uint16_t));
memcpy(&new_list[frnd->grp_cnt], list, grp_cnt * sizeof(uint16_t));
l_free(grp_list);
frnd->ele_cnt = ele_cnt;
frnd->grp_list = new_list;
frnd->grp_cnt += grp_cnt;
}
void mesh_friend_sub_del(struct mesh_net *net, uint16_t lpn,
uint8_t cnt,
const uint8_t *del_list)
{
uint16_t *grp_list;
int16_t i, grp_cnt;
size_t cnt16 = cnt * sizeof(uint16_t);
struct mesh_friend *frnd = l_queue_find(net->friends,
match_by_friend,
L_UINT_TO_PTR(lpn));
if (!frnd)
return;
grp_cnt = frnd->grp_cnt;
grp_list = frnd->grp_list;
while (cnt-- && grp_cnt) {
cnt16 -= sizeof(uint16_t);
for (i = grp_cnt - 1; i >= 0; i--) {
if (l_get_le16(del_list + cnt16) == grp_list[i]) {
grp_cnt--;
memcpy(&grp_list[i], &grp_list[i + 1],
(grp_cnt - i) * sizeof(uint16_t));
break;
}
}
}
frnd->grp_cnt = grp_cnt;
if (!grp_cnt) {
l_free(frnd->grp_list);
frnd->grp_list = NULL;
}
}
uint32_t mesh_net_next_seq_num(struct mesh_net *net)
{
uint32_t seq = net->seq_num;
net->seq_num++;
/* Periodically store advanced sequence number */
if (net->seq_num + MIN_SEQ_TRIGGER >= net->cached_seq_num) {
net->cached_seq_num = net->seq_num +
node_seq_cache(net->local_node);
node_set_sequence_number(net->local_node, net->cached_seq_num);
}
return seq;
}
static struct mesh_sar *mesh_sar_new(size_t len)
{
size_t size = sizeof(struct mesh_sar) + len;
struct mesh_sar *sar;
sar = l_malloc(size);
memset(sar, 0, size);
return sar;
}
static void mesh_sar_free(void *data)
{
struct mesh_sar *sar = data;
if (!sar)
return;
l_timeout_remove(sar->seg_timeout);
l_timeout_remove(sar->msg_timeout);
l_free(sar);
}
static void mesh_msg_free(void *data)
{
struct mesh_msg *msg = data;
l_free(msg);
}
static void lpn_process_beacon(void *user_data, const void *data, uint8_t size,
int8_t rssi);
static struct mesh_subnet *subnet_new(struct mesh_net *net, uint16_t idx)
{
struct mesh_subnet *subnet;
subnet = l_new(struct mesh_subnet, 1);
if (!subnet)
return NULL;
subnet->net = net;
subnet->idx = idx;
subnet->tx = &subnet->current;
subnet->updated.key_set.nid = NET_NID_INVALID;
subnet->snb.beacon[0] = MESH_AD_TYPE_BEACON;
return subnet;
}
static bool create_keys(struct mesh_net *net, struct net_key *keys,
const uint8_t *net_key)
{
uint8_t nid[1];
uint8_t enc_key[16];
uint8_t privacy_key[16];
uint8_t network_id[8];
uint8_t p[] = {0};
if (!mesh_crypto_k2(net_key, p, sizeof(p),
nid, enc_key, privacy_key))
return false;
if (!mesh_crypto_k3(net_key, network_id))
return false;
if (!mesh_crypto_nkbk(net_key, keys->beacon_key))
return false;
keys->key_set.frnd = false;
keys->key_set.nid = nid[0];
memcpy(keys->key_set.enc_key, enc_key, 16);
memcpy(keys->key_set.privacy_key, privacy_key, 16);
memcpy(keys->network_id, network_id, 8);
memcpy(keys->key, net_key, 16);
return true;
}
static bool create_secure_beacon(struct mesh_net *net,
struct mesh_subnet *subnet,
uint8_t *beacon_data, uint8_t size)
{
uint64_t cmac;
if (size < 22)
return false;
beacon_data[0] = BEACON_TYPE_SNB;
beacon_data[1] = 0;
if (subnet->key_refresh)
beacon_data[1] |= 0x01;
if (iv_is_updating(net))
beacon_data[1] |= 0x02;
memcpy(beacon_data + 2, subnet->tx->network_id, 8);
l_put_be32(net->iv_index, beacon_data + 10);
if (!mesh_crypto_beacon_cmac(subnet->tx->beacon_key,
subnet->tx->network_id,
net->iv_index, subnet->key_refresh,
iv_is_updating(net), &cmac))
return false;
l_put_be64(cmac, beacon_data + 14);
return true;
}
static void send_network_beacon(struct mesh_subnet *subnet,
struct mesh_net *net)
{
struct mesh_io_send_info info = {
.type = MESH_IO_TIMING_TYPE_GENERAL,
.u.gen.interval = net->tx_interval,
.u.gen.cnt = 1,
.u.gen.min_delay = DEFAULT_MIN_DELAY,
.u.gen.max_delay = DEFAULT_MAX_DELAY
};
l_info("Send SNB on network %3.3x", subnet->idx);
mesh_io_send(net->io, &info, subnet->snb.beacon,
sizeof(subnet->snb.beacon));
}
static void network_beacon_timeout(struct l_timeout *timeout, void *user_data)
{
struct mesh_subnet *subnet = user_data;
uint32_t interval;
send_network_beacon(subnet, subnet->net);
if (!subnet->snb.half_period) {
l_debug("beacon TO period %d, observed %d, expected %d",
subnet->snb.observe_period,
subnet->snb.observed,
subnet->snb.expected);
interval = subnet->snb.observe_period *
(subnet->snb.observed + 1) / subnet->snb.expected;
subnet->snb.observe_period = interval * 2;
subnet->snb.expected = subnet->snb.observe_period / 10;
subnet->snb.observed = 0;
} else
interval = subnet->snb.observe_period / 2;
if (interval < BEACON_INTERVAL_MIN)
interval = BEACON_INTERVAL_MIN;
if (interval > BEACON_INTERVAL_MAX)
interval = BEACON_INTERVAL_MAX;
subnet->snb.ts = get_timestamp_secs();
subnet->snb.half_period ^= 1;
l_timeout_modify(timeout, interval);
}
static void start_network_beacon(void *a, void *b)
{
struct mesh_subnet *subnet = a;
struct mesh_net *net = b;
if (!net->beacon_enable) {
if (subnet->snb.timeout)
l_timeout_remove(subnet->snb.timeout);
subnet->snb.timeout = NULL;
return;
}
/* If timeout is active, let it run it's course */
if (subnet->snb.timeout)
return;
send_network_beacon(subnet, subnet->net);
subnet->snb.ts = get_timestamp_secs();
subnet->snb.expected = 2;
subnet->snb.observed = 0;
subnet->snb.half_period = 1;
subnet->snb.observe_period = BEACON_INTERVAL_MIN * 2;
subnet->snb.timeout = l_timeout_create(BEACON_INTERVAL_MIN,
network_beacon_timeout, subnet, NULL);
}
struct mesh_net *mesh_net_new(uint16_t index)
{
struct mesh_net *net;
net = l_new(struct mesh_net, 1);
if (!net)
return NULL;
net->pkt_id = 0;
net->bea_id = 0;
net->key_id_next = 0;
net->beacon_enable = true;
net->proxy_enable = false;
net->relay.enable = false;
net->seq_num = 0x000000;
net->src_addr = 0x0000;
net->default_ttl = 0x00;
net->provisioner = false;
net->test_mode = false;
memset(&net->prov_caps, 0, sizeof(net->prov_caps));
net->prov_caps.algorithms = 1;
net->tx_cnt = DEFAULT_TRANSMIT_COUNT;
net->tx_interval = DEFAULT_TRANSMIT_INTERVAL;
net->subnets = l_queue_new();
net->key_sets = l_queue_new();
net->fast_cache = l_queue_new();
net->msg_cache = l_queue_new();
net->sar_in = l_queue_new();
net->sar_out = l_queue_new();
net->frnd_msgs = l_queue_new();
net->friends = l_queue_new();
net->destinations = l_queue_new();
net->app_keys = l_queue_new();
memset(&net->heartbeat, 0, sizeof(net->heartbeat));
return mesh_net_ref(net);
}
struct mesh_net *mesh_net_ref(struct mesh_net *net)
{
if (!net)
return NULL;
__sync_fetch_and_add(&net->ref_count, 1);
return net;
}
void mesh_net_unref(struct mesh_net *net)
{
if (!net)
return;
if (__sync_sub_and_fetch(&net->ref_count, 1))
return;
/* key_sets are not allocated to this queue. Only Borrowed */
l_queue_destroy(net->key_sets, NULL);
net->key_sets = NULL;
l_queue_destroy(net->subnets, l_free);
l_queue_destroy(net->fast_cache, mesh_msg_free);
l_queue_destroy(net->msg_cache, mesh_msg_free);
l_queue_destroy(net->sar_in, mesh_sar_free);
l_queue_destroy(net->sar_out, mesh_sar_free);
l_queue_destroy(net->frnd_msgs, l_free);
l_queue_destroy(net->friends, mesh_friend_free);
l_queue_destroy(net->destinations, l_free);
l_queue_destroy(net->app_keys, appkey_key_free);
l_free(net);
}
bool mesh_net_set_seq_num(struct mesh_net *net, uint32_t number)
{
if (!net)
return false;
net->cached_seq_num = net->seq_num = number;
return true;
}
bool mesh_net_set_default_ttl(struct mesh_net *net, uint8_t ttl)
{
if (!net)
return false;
net->default_ttl = ttl;
return true;
}
uint32_t mesh_net_get_seq_num(struct mesh_net *net)
{
if (!net)
return 0;
return net->seq_num;
}
uint8_t mesh_net_get_default_ttl(struct mesh_net *net)
{
if (!net)
return 0;
return net->default_ttl;
}
uint16_t mesh_net_get_address(struct mesh_net *net)
{
if (!net)
return 0;
return net->src_addr;
}
bool mesh_net_register_unicast(struct mesh_net *net,
uint16_t address, uint8_t num_ele)
{
if (!net || !IS_UNICAST(address) || !num_ele)
return false;
l_info("mesh_net_set_address: 0x%x", address);
net->src_addr = address;
net->last_addr = address + num_ele - 1;
if (net->last_addr < net->src_addr)
return false;
do {
mesh_net_dst_reg(net, address);
address++;
num_ele--;
} while (num_ele > 0);
return true;
}
uint8_t mesh_net_get_num_ele(struct mesh_net *net)
{
if (!net)
return 0;
return net->last_addr - net->src_addr + 1;
}
bool mesh_net_set_proxy_mode(struct mesh_net *net, bool enable)
{
if (!net)
return false;
/* No support for proxy yet */
if (enable) {
l_error("Proxy not supported!");
return false;
}
trigger_heartbeat(net, FEATURE_PROXY, enable);
return true;
}
bool mesh_net_set_friend_mode(struct mesh_net *net, bool enable)
{
if (!net)
return false;
if (net->friend_enable && !enable)
l_queue_clear(net->friends, mesh_friend_free);
net->friend_enable = enable;
trigger_heartbeat(net, FEATURE_FRIEND, enable);
return true;
}
bool mesh_net_set_relay_mode(struct mesh_net *net, bool enable,
uint8_t cnt, uint8_t interval)
{
if (!net)
return false;
net->relay.enable = enable;
net->relay.count = cnt;
net->relay.interval = interval;
trigger_heartbeat(net, FEATURE_RELAY, enable);
return true;
}
struct mesh_net_prov_caps *mesh_net_prov_caps_get(struct mesh_net *net)
{
if (net)
return &net->prov_caps;
return NULL;
}
char *mesh_net_id_name(struct mesh_net *net)
{
if (net && net->id_name[0])
return net->id_name;
return NULL;
}
bool mesh_net_id_uuid_set(struct mesh_net *net, uint8_t uuid[16])
{
if (!net)
return false;
memcpy(net->id_uuid, uuid, 16);
return true;
}
uint8_t *mesh_net_priv_key_get(struct mesh_net *net)
{
if (net)
return net->prov_priv_key;
return NULL;
}
bool mesh_net_priv_key_set(struct mesh_net *net, uint8_t key[32])
{
if (!net)
return false;
memcpy(net->prov_priv_key, key, 32);
return true;
}
uint8_t *mesh_net_test_addr(struct mesh_net *net)
{
const uint8_t zero_addr[] = {0, 0, 0, 0, 0, 0};
if (net && memcmp(net->test_bd_addr, zero_addr, 6))
return net->test_bd_addr;
return NULL;
}
uint8_t *mesh_net_prov_rand(struct mesh_net *net)
{
if (net)
return net->prov_rand;
return NULL;
}
uint16_t mesh_net_prov_uni(struct mesh_net *net, uint8_t ele_cnt)
{
uint16_t uni;
uint16_t next;
if (!net)
return 0;
next = net->prov_uni_addr.next + ele_cnt;
if (next > 0x8000 || next > net->prov_uni_addr.high)
return UNASSIGNED_ADDRESS;
uni = net->prov_uni_addr.next;
net->prov_uni_addr.next = next;
return uni;
}
bool mesh_net_test_mode(struct mesh_net *net)
{
if (net)
return net->test_mode;
return false;
}
int mesh_net_get_identity_mode(struct mesh_net *net, uint16_t idx,
uint8_t *mode)
{
struct mesh_subnet *subnet;
if (!net)
return MESH_STATUS_UNSPECIFIED_ERROR;
subnet = l_queue_find(net->subnets, match_key_index,
L_UINT_TO_PTR(idx));
if (!subnet)
return MESH_STATUS_INVALID_NETKEY;
/* Currently, proxy mode is not supported */
*mode = MESH_MODE_UNSUPPORTED;
return MESH_STATUS_SUCCESS;
}
int mesh_net_del_key(struct mesh_net *net, uint16_t idx)
{
struct mesh_subnet *subnet;
if (!net)
return MESH_STATUS_UNSPECIFIED_ERROR;
/* Cannot remove primary key */
if (l_queue_length(net->subnets) <= 1)
return MESH_STATUS_CANNOT_REMOVE;
subnet = l_queue_find(net->subnets, match_key_index,
L_UINT_TO_PTR(idx));
if (!subnet)
return MESH_STATUS_CANNOT_REMOVE;
/* Delete associated app keys */
appkey_delete_bound_keys(net, idx);
/* Disable hearbeat publication on this subnet */
if (idx == net->heartbeat.pub_net_idx)
net->heartbeat.pub_dst = UNASSIGNED_ADDRESS;
mesh_net_remove_keyset(net, &subnet->current.key_set);
mesh_net_remove_keyset(net, &subnet->updated.key_set);
/* TODO: cancel beacon_enable on this subnet */
l_queue_remove(net->subnets, subnet);
if (!storage_local_net_key_del(net, idx))
return MESH_STATUS_STORAGE_FAIL;
return MESH_STATUS_SUCCESS;
}
int mesh_net_add_key(struct mesh_net *net, bool update, uint16_t idx,
const void *value)
{
int status;
struct mesh_subnet *subnet;
subnet = l_queue_find(net->subnets, match_key_index,
L_UINT_TO_PTR(idx));
if (update) {
if (subnet && subnet->kr_phase == KEY_REFRESH_PHASE_NONE) {
l_info("Start key refresh");
status = mesh_net_kr_phase_one(net, idx, value);
if (status == MESH_STATUS_SUCCESS &&
!storage_local_net_key_add(net, idx,
value, KEY_REFRESH_PHASE_ONE))
return MESH_STATUS_STORAGE_FAIL;
} else
return MESH_STATUS_CANNOT_UPDATE;
}
if (subnet)
return memcmp(subnet->current.key, value, 16) ?
MESH_STATUS_IDX_ALREADY_STORED : MESH_STATUS_SUCCESS;
subnet = subnet_new(net, idx);
if (!subnet)
return MESH_STATUS_INSUFF_RESOURCES;
if (!create_keys(net, &subnet->current, value) ||
!mesh_net_add_keyset(net, &subnet->current.key_set)) {
l_free(subnet);
return MESH_STATUS_INSUFF_RESOURCES;
}
if (!create_secure_beacon(net, subnet, &subnet->snb.beacon[1], 22) ||
!l_queue_push_tail(net->subnets, subnet)) {
mesh_net_remove_keyset(net, &subnet->current.key_set);
l_free(subnet);
return MESH_STATUS_INSUFF_RESOURCES;
}
if (!storage_local_net_key_add(net, idx, value,
KEY_REFRESH_PHASE_NONE)) {
l_queue_remove(net->subnets, subnet);
mesh_net_remove_keyset(net, &subnet->current.key_set);
l_free(subnet);
return MESH_STATUS_STORAGE_FAIL;
}
if (net->io)
start_network_beacon(subnet, net);
return MESH_STATUS_SUCCESS;
}
void mesh_net_flush_msg_queues(struct mesh_net *net)
{
l_queue_clear(net->msg_cache, mesh_msg_free);
l_queue_clear(net->fast_cache, mesh_msg_free);
}
uint32_t mesh_net_get_iv_index(struct mesh_net *net)
{
if (!net)
return 0xffffffff;
return net->iv_index - (iv_is_updating(net) ? 1 : 0);
}
/* TODO: net key index? */
void mesh_net_get_snb_state(struct mesh_net *net, uint8_t *flags,
uint32_t *iv_index)
{
struct mesh_subnet *subnet;
if (!net || !flags || !iv_index)
return;
*iv_index = net->iv_index;
*flags = (net->iv_upd_state == IV_UPD_UPDATING) ? 0x02 : 0x00;
subnet = get_primary_subnet(net);
if (subnet)
*flags |= subnet->key_refresh ? 0x01 : 0x00;
}
bool mesh_net_get_key(struct mesh_net *net, bool new_key, uint16_t idx,
uint8_t key_buf[16])
{
struct mesh_subnet *subnet;
if (!net)
return false;
subnet = l_queue_find(net->subnets, match_key_index,
L_UINT_TO_PTR(idx));
if (!subnet)
return false;
if (!new_key) {
memcpy(key_buf, subnet->current.key, 16);
return true;
}
if (subnet->updated.key_set.nid == NET_NID_INVALID)
return false;
memcpy(key_buf, subnet->updated.key, 16);
return true;
}
bool mesh_net_key_list_get(struct mesh_net *net, uint8_t *buf, uint16_t *size)
{
const struct l_queue_entry *entry;
uint16_t n, buf_size;
if (!net || !buf || !size)
return false;
buf_size = *size;
if (buf_size < l_queue_length(net->subnets) * 2)
return false;
n = 0;
entry = l_queue_get_entries(net->subnets);
for (; entry; entry = entry->next) {
struct mesh_subnet *subnet = entry->data;
l_put_le16(subnet->idx, buf);
n += 2;
}
*size = n;
return true;
}
bool mesh_net_get_frnd_seq(struct mesh_net *net)
{
if (!net)
return false;
return net->friend_seq;
}
void mesh_net_set_frnd_seq(struct mesh_net *net, bool seq)
{
if (!net)
return;
net->friend_seq = seq;
}
static bool match_cache(const void *a, const void *b)
{
const struct mesh_msg *msg = a;
const struct mesh_msg *tst = b;
if (msg->seq != tst->seq || msg->mic != tst->mic ||
msg->src != tst->src)
return false;
return true;
}
static bool msg_in_cache(struct mesh_net *net, uint16_t src, uint32_t seq,
uint32_t mic)
{
struct mesh_msg *msg;
struct mesh_msg tst = {
.src = src,
.seq = seq,
.mic = mic,
};
msg = l_queue_remove_if(net->msg_cache, match_cache, &tst);
if (msg) {
l_debug("Supressing duplicate %4.4x + %6.6x + %8.8x",
src, seq, mic);
l_queue_push_head(net->msg_cache, msg);
return true;
}
msg = l_new(struct mesh_msg, 1);
*msg = tst;
l_queue_push_head(net->msg_cache, msg);
l_debug("Add %4.4x + %6.6x + %8.8x", src, seq, mic);
if (l_queue_length(net->msg_cache) > MSG_CACHE_SIZE) {
msg = l_queue_peek_tail(net->msg_cache);
/* Remove Tail (oldest msg in cache) */
l_debug("Remove %4.4x + %6.6x + %8.8x",
msg->src, msg->seq, msg->mic);
if (l_queue_remove(net->msg_cache, msg))
l_free(msg);
}
return false;
}
static bool match_sar_seq0(const void *a, const void *b)
{
const struct mesh_sar *sar = a;
uint16_t seqZero = L_PTR_TO_UINT(b);
return sar->seqZero == seqZero;
}
static bool match_sar_remote(const void *a, const void *b)
{
const struct mesh_sar *sar = a;
uint16_t remote = L_PTR_TO_UINT(b);
return sar->remote == remote;
}
static bool match_msg_timeout(const void *a, const void *b)
{
const struct mesh_sar *sar = a;
const struct l_timeout *msg_timeout = b;
return sar->msg_timeout == msg_timeout;
}
static bool match_sar_id(const void *a, const void *b)
{
const struct mesh_sar *sar = a;
unsigned int id = L_PTR_TO_UINT(b);
return sar->id == id;
}
static bool match_seg_timeout(const void *a, const void *b)
{
const struct mesh_sar *sar = a;
const struct l_timeout *seg_timeout = b;
return sar->seg_timeout == seg_timeout;
}
static bool match_dest_dst(const void *a, const void *b)
{
const struct mesh_destination *dest = a;
uint16_t dst = L_PTR_TO_UINT(b);
return dst == dest->dst;
}
static bool match_frnd_dst(const void *a, const void *b)
{
const struct mesh_friend *frnd = a;
uint16_t dst = L_PTR_TO_UINT(b);
int16_t i, grp_cnt = frnd->grp_cnt;
uint16_t *grp_list = frnd->grp_list;
/*
* Determine if this message is for this friends unicast
* address, and/or one of it's group/virtual addresses
*/
if (dst >= frnd->dst && dst < (frnd->dst + frnd->ele_cnt))
return true;
if (!(dst & 0x8000))
return false;
for (i = 0; i < grp_cnt; i++) {
if (dst == grp_list[i])
return true;
}
return false;
}
static bool is_lpn_friend(struct mesh_net *net, uint16_t addr, bool frnd)
{
void *tst;
if (!frnd)
return false;
tst = l_queue_find(net->friends, match_frnd_dst, L_UINT_TO_PTR(addr));
return tst != NULL;
}
static bool is_us(struct mesh_net *net, uint16_t addr, bool src)
{
void *tst;
if (IS_ALL_NODES(addr))
return true;
if (addr == FRIENDS_ADDRESS)
return net->friend_enable;
if (addr == RELAYS_ADDRESS)
return net->relay.enable;
if (addr == PROXIES_ADDRESS)
return net->proxy_enable;
if (addr >= net->src_addr && addr <= net->last_addr)
return true;
tst = l_queue_find(net->destinations, match_dest_dst,
L_UINT_TO_PTR(addr));
if (tst == NULL && !src)
tst = l_queue_find(net->friends, match_frnd_dst,
L_UINT_TO_PTR(addr));
return tst != NULL;
}
static struct mesh_friend_msg *mesh_friend_msg_new(uint8_t seg_max)
{
struct mesh_friend_msg *frnd_msg;
if (seg_max) {
size_t size = sizeof(struct mesh_friend_msg) -
sizeof(struct mesh_friend_seg_one);
size += (seg_max + 1) * sizeof(struct mesh_friend_seg_12);
frnd_msg = (struct mesh_friend_msg *) l_new(uint8_t, size);
} else
frnd_msg = l_new(struct mesh_friend_msg, 1);
return frnd_msg;
}
static bool match_ack(const void *a, const void *b)
{
const struct mesh_friend_msg *old = a;
const struct mesh_friend_msg *rx = b;
uint32_t old_hdr;
uint32_t new_hdr;
/* Determine if old pkt is ACK to same SAR message that new ACK is */
if (!old->ctl || old->src != rx->src)
return false;
/* Check the quickest items first before digging deeper */
old_hdr = old->u.one[0].hdr & HDR_ACK_MASK;
new_hdr = rx->u.one[0].hdr & HDR_ACK_MASK;
return old_hdr == new_hdr;
}
static void enqueue_friend_pkt(void *a, void *b)
{
struct mesh_friend *frnd = a;
struct mesh_friend_msg *pkt, *rx = b;
size_t size;
int16_t i;
if (rx->done)
return;
/*
* Determine if this message is for this friends unicast
* address, and/or one of it's group/virtual addresses
*/
if (rx->dst >= frnd->dst && (rx->dst - frnd->dst) < frnd->ele_cnt) {
rx->done = true;
goto enqueue;
}
if (!(rx->dst & 0x8000))
return;
if (!IS_ALL_NODES(rx->dst)) {
for (i = 0; i < frnd->grp_cnt; i++) {
if (rx->dst == frnd->grp_list[i])
goto enqueue;
}
return;
}
enqueue:
/* Special handling for Seg Ack -- Only one per message queue */
if (((rx->u.one[0].hdr >> OPCODE_HDR_SHIFT) & OPCODE_MASK) ==
NET_OP_SEG_ACKNOWLEDGE) {
void *old_head = l_queue_peek_head(frnd->pkt_cache);
/* Suppress duplicate ACKs */
do {
void *old = l_queue_remove_if(frnd->pkt_cache,
match_ack, rx);
if (old) {
if (old_head == old) {
/*
* If we are discarding head for any
* reason, reset FRND SEQ
*/
frnd->last = frnd->seq;
}
l_free(old);
} else
break;
} while (true);
}
l_debug("%s for %4.4x from %4.4x ttl: %2.2x (seq: %6.6x) (ctl: %d)",
__func__, frnd->dst, rx->src, rx->ttl,
rx->u.one[0].seq, rx->ctl);
if (rx->cnt_in) {
size = sizeof(struct mesh_friend_msg) -
sizeof(struct mesh_friend_seg_one);
size += (rx->cnt_in + 1) * sizeof(struct mesh_friend_seg_12);
} else
size = sizeof(struct mesh_friend_msg);
pkt = l_malloc(size);
memcpy(pkt, rx, size);
l_queue_push_tail(frnd->pkt_cache, pkt);
if (l_queue_length(frnd->pkt_cache) > FRND_CACHE_MAX) {
/*
* TODO: Guard against popping UPDATE packets
* (disallowed per spec)
*/
pkt = l_queue_pop_head(frnd->pkt_cache);
l_free(pkt);
frnd->last = frnd->seq;
}
}
static void enqueue_update(void *a, void *b)
{
struct mesh_friend *frnd = a;
struct mesh_friend_msg *pkt = b;
pkt->dst = frnd->dst;
pkt->done = false;
enqueue_friend_pkt(frnd, pkt);
}
static uint32_t seq_auth(uint32_t seq, uint16_t seqZero)
{
uint32_t seqAuth = seqZero & SEQ_ZERO_MASK;
seqAuth |= seq & (~SEQ_ZERO_MASK);
if (seqAuth > seq)
seqAuth -= (SEQ_ZERO_MASK + 1);
return seqAuth;
}
static bool friend_packet_queue(struct mesh_net *net,
uint32_t iv_index,
bool ctl, uint8_t ttl,
uint32_t seq,
uint16_t src, uint16_t dst,
uint32_t hdr,
const uint8_t *data, uint16_t size)
{
struct mesh_friend_msg *frnd_msg;
uint8_t seg_max = SEG_TOTAL(hdr);
bool ret;
if (seg_max && !IS_SEGMENTED(hdr))
return false;
frnd_msg = mesh_friend_msg_new(seg_max);
if (IS_SEGMENTED(hdr)) {
uint32_t seqAuth = seq_auth(seq, hdr >> SEQ_ZERO_HDR_SHIFT);
uint8_t i;
for (i = 0; i <= seg_max; i++) {
memcpy(frnd_msg->u.s12[i].data, data, 12);
frnd_msg->u.s12[i].hdr = hdr;
frnd_msg->u.s12[i].seq = seqAuth + i;
data += 12;
hdr += (1 << SEGO_HDR_SHIFT);
}
frnd_msg->u.s12[seg_max].seq = seq;
frnd_msg->cnt_in = seg_max;
frnd_msg->last_len = size % 12;
if (!frnd_msg->last_len)
frnd_msg->last_len = 12;
} else {
uint8_t opcode = hdr >> OPCODE_HDR_SHIFT;
if (ctl && opcode != NET_OP_SEG_ACKNOWLEDGE) {
/* Don't cache Friend Ctl opcodes */
if (FRND_OPCODE(opcode)) {
l_free(frnd_msg);
return false;
}
memcpy(frnd_msg->u.one[0].data + 1, data, size);
frnd_msg->last_len = size + 1;
frnd_msg->u.one[0].data[0] = opcode;
} else {
memcpy(frnd_msg->u.one[0].data, data, size);
frnd_msg->last_len = size;
}
frnd_msg->u.one[0].hdr = hdr;
frnd_msg->u.one[0].seq = seq;
}
frnd_msg->iv_index = iv_index;
frnd_msg->src = src;
frnd_msg->dst = dst;
frnd_msg->ctl = ctl;
frnd_msg->ttl = ttl;
/* Re-Package into Friend Delivery payload */
l_queue_foreach(net->friends, enqueue_friend_pkt, frnd_msg);
ret = frnd_msg->done;
/* TODO Optimization(?): Unicast messages keep this buffer */
l_free(frnd_msg);
return ret;
}
static void friend_ack_rxed(struct mesh_net *net, uint32_t iv_index,
uint32_t seq,
uint16_t src, uint16_t dst,
const uint8_t *pkt)
{
uint32_t hdr = l_get_be32(pkt) &
((SEQ_ZERO_MASK << SEQ_ZERO_HDR_SHIFT) | /* Preserve SeqZero */
(true << RELAY_HDR_SHIFT)); /* Preserve Relay bit */
uint32_t flags = l_get_be32(pkt + 3);
struct mesh_friend_msg frnd_ack = {
.ctl = true,
.iv_index = iv_index,
.src = src,
.dst = dst,
.last_len = sizeof(flags),
.u.one[0].seq = seq,
.done = false,
};
hdr |= NET_OP_SEG_ACKNOWLEDGE << OPCODE_HDR_SHIFT;
frnd_ack.u.one[0].hdr = hdr;
l_put_be32(flags, frnd_ack.u.one[0].data);
l_queue_foreach(net->friends, enqueue_friend_pkt, &frnd_ack);
}
static bool send_seg(struct mesh_net *net, struct mesh_sar *msg, uint8_t seg);
static void send_frnd_ack(struct mesh_net *net, uint16_t src, uint16_t dst,
uint32_t hdr, uint32_t flags)
{
uint32_t expected;
uint8_t msg[7];
/* We don't ACK from multicast destinations */
if (src & 0x8000)
return;
/* Calculate the "Full ACK" mask */
expected = 0xffffffff >> (31 - SEG_TOTAL(hdr));
/* Clear Hdr bits that don't apply to Seg ACK */
hdr &= ~((true << SEG_HDR_SHIFT) |
(OPCODE_MASK << OPCODE_HDR_SHIFT) |
(true << SZMIC_HDR_SHIFT) |
(SEG_MASK << SEGO_HDR_SHIFT) |
(SEG_MASK << SEGN_HDR_SHIFT));
hdr |= NET_OP_SEG_ACKNOWLEDGE << OPCODE_HDR_SHIFT;
hdr |= true << RELAY_HDR_SHIFT;
/* Clear all unexpected bits */
flags &= expected;
l_put_be32(hdr, msg);
l_put_be32(flags, msg + 3);
l_info("Send Friend ACK to Segs: %8.8x", flags);
if (is_lpn_friend(net, dst, true)) {
/* If we are acking our LPN Friend, queue, don't send */
friend_ack_rxed(net, mesh_net_get_iv_index(net),
mesh_net_next_seq_num(net), 0, dst, msg);
} else {
mesh_net_transport_send(net, NULL, false,
mesh_net_get_iv_index(net), DEFAULT_TTL,
0, 0, dst, msg, sizeof(msg));
}
}
static void send_net_ack(struct mesh_net *net, struct mesh_sar *sar,
uint32_t flags)
{
uint8_t msg[7];
uint32_t hdr;
uint16_t src = sar->src;
uint16_t dst = sar->remote;
/* We don't ACK from multicast destinations */
if (src & 0x8000)
return;
/* We don't ACK segments as a Low Power Node */
if (net->friend_addr)
return;
hdr = NET_OP_SEG_ACKNOWLEDGE << OPCODE_HDR_SHIFT;
hdr |= sar->seqZero << SEQ_ZERO_HDR_SHIFT;
if (is_lpn_friend(net, src, true))
hdr |= true << RELAY_HDR_SHIFT;
l_put_be32(hdr, msg);
l_put_be32(flags, msg + 3);
l_info("Send%s ACK to Segs: %8.8x", sar->frnd ? " Friend" : "", flags);
if (is_lpn_friend(net, dst, true)) {
/* If we are acking our LPN Friend, queue, don't send */
friend_ack_rxed(net, mesh_net_get_iv_index(net),
mesh_net_next_seq_num(net), src, dst, msg);
return;
}
mesh_net_transport_send(net, NULL, false,
mesh_net_get_iv_index(net), DEFAULT_TTL,
0, src, dst, msg, sizeof(msg));
}
static void inseg_to(struct l_timeout *seg_timeout, void *user_data)
{
struct mesh_net *net = user_data;
struct mesh_sar *sar = l_queue_find(net->sar_in,
match_seg_timeout, seg_timeout);
l_timeout_remove(seg_timeout);
if (!sar)
return;
/* Send NAK */
l_info("Timeout %p %3.3x", sar, sar->app_idx);
send_net_ack(net, sar, sar->flags);
sar->seg_timeout = l_timeout_create(SEG_TO, inseg_to, net, NULL);
}
static void inmsg_to(struct l_timeout *msg_timeout, void *user_data)
{
struct mesh_net *net = user_data;
struct mesh_sar *sar = l_queue_remove_if(net->sar_in,
match_msg_timeout, msg_timeout);
l_timeout_remove(msg_timeout);
if (!sar)
return;
sar->msg_timeout = NULL;
/* print_packet("Incoming SAR Timeout", sar->buf, sar->len); */
mesh_sar_free(sar);
}
static void outmsg_to(struct l_timeout *msg_timeout, void *user_data)
{
struct mesh_net *net = user_data;
struct mesh_sar *sar = l_queue_remove_if(net->sar_out,
match_msg_timeout, msg_timeout);
l_timeout_remove(msg_timeout);
if (!sar)
return;
sar->msg_timeout = NULL;
if (sar->status_func)
sar->status_func(sar->remote, 1,
sar->buf, sar->len - 4,
sar->user_data);
/* print_packet("Outgoing SAR Timeout", sar->buf, sar->len); */
mesh_sar_free(sar);
}
static void outseg_to(struct l_timeout *seg_timeout, void *user_data);
static void ack_received(struct mesh_net *net, bool timeout,
uint16_t src, uint16_t dst,
uint16_t seq0, uint32_t ack_flag)
{
struct mesh_sar *outgoing;
uint32_t seg_flag = 0x00000001;
uint32_t ack_copy = ack_flag;
uint16_t i;
l_info("ACK Rxed (%x) (to:%d): %8.8x", seq0, timeout, ack_flag);
outgoing = l_queue_find(net->sar_out, match_sar_seq0,
L_UINT_TO_PTR(seq0));
if (!outgoing) {
l_info("Not Found: %4.4x", seq0);
return;
}
/*
* TODO -- If we receive from different
* SRC than we are sending to, make sure the OBO flag is set
*/
if ((!timeout && !ack_flag) ||
(outgoing->flags & ack_flag) == outgoing->flags) {
l_debug("ob_sar_removal (%x)", outgoing->flags);
/* Note: ack_flags == 0x00000000 is a remote Cancel request */
if (outgoing->status_func)
outgoing->status_func(src, ack_flag ? 0 : 1,
outgoing->buf,
outgoing->len - 4, outgoing->user_data);
l_queue_remove(net->sar_out, outgoing);
mesh_sar_free(outgoing);
return;
}
outgoing->last_nak |= ack_flag;
ack_copy &= outgoing->flags;
for (i = 0; i <= SEG_MAX(outgoing->len); i++, seg_flag <<= 1) {
if (seg_flag & ack_flag) {
l_debug("Skipping Seg %d of %d",
i, SEG_MAX(outgoing->len));
continue;
}
ack_copy |= seg_flag;
l_info("Resend Seg %d net:%p dst:%x app_idx:%3.3x",
i, net, outgoing->remote, outgoing->app_idx);
send_seg(net, outgoing, i);
}
l_timeout_remove(outgoing->seg_timeout);
outgoing->seg_timeout = l_timeout_create(SEG_TO, outseg_to, net, NULL);
}
static void outack_to(struct l_timeout *seg_timeout, void *user_data)
{
struct mesh_net *net = user_data;
struct mesh_sar *sar = l_queue_find(net->sar_out,
match_seg_timeout, seg_timeout);
l_timeout_remove(seg_timeout);
if (!sar)
return;
sar->seg_timeout = NULL;
/* Re-Send missing segments by faking NAK */
ack_received(net, true, sar->remote, sar->src,
sar->seqZero, sar->last_nak);
}
static void outseg_to(struct l_timeout *seg_timeout, void *user_data)
{
struct mesh_net *net = user_data;
struct mesh_sar *sar = l_queue_find(net->sar_out,
match_seg_timeout, seg_timeout);
l_timeout_remove(seg_timeout);
if (!sar)
return;
sar->seg_timeout = NULL;
if (net->friend_addr) {
/* We are LPN -- Poll for ACK */
frnd_ack_poll(net);
sar->seg_timeout = l_timeout_create(SEG_TO,
outack_to, net, NULL);
} else {
/* Re-Send missing segments by faking NACK */
ack_received(net, true, sar->remote, sar->src,
sar->seqZero, sar->last_nak);
}
}
static bool msg_rxed(struct mesh_net *net, bool frnd,
uint32_t iv_index,
uint8_t ttl,
uint32_t seq,
uint16_t src, uint16_t dst,
uint8_t key_id,
bool szmic, uint16_t seqZero,
const uint8_t *data, uint16_t size)
{
uint32_t seqAuth = seq_auth(seq, seqZero);
/* Sanity check seqAuth */
if (seqAuth > seq)
return false;
/* Save un-decrypted messages for our friends */
if (!frnd && l_queue_length(net->friends)) {
uint32_t hdr = key_id << KEY_HDR_SHIFT;
uint8_t frnd_ttl = ttl;
/* If not from us, decrement for our hop */
if (src < net->src_addr || src > net->last_addr) {
if (frnd_ttl > 1)
frnd_ttl--;
else
goto not_for_friend;
}
if (szmic || size > 15) {
hdr |= true << SEG_HDR_SHIFT;
hdr |= szmic << SZMIC_HDR_SHIFT;
hdr |= (seqZero & SEQ_ZERO_MASK) << SEQ_ZERO_HDR_SHIFT;
hdr |= SEG_MAX(size) << SEGN_HDR_SHIFT;
}
if (friend_packet_queue(net, iv_index, false, frnd_ttl,
seq, src, dst,
hdr, data, size))
return true;
}
not_for_friend:
return mesh_model_rx(net, szmic, seqAuth, seq, iv_index,
ttl, src, dst, key_id, data, size);
}
static bool match_frnd_sar_dst(const void *a, const void *b)
{
const struct mesh_friend_msg *frnd_msg = a;
uint16_t dst = L_PTR_TO_UINT(b);
return frnd_msg->dst == dst;
}
static void friend_seg_rxed(struct mesh_net *net,
uint32_t iv_index,
uint8_t ttl, uint32_t seq,
uint16_t src, uint16_t dst, uint32_t hdr,
const uint8_t *data, uint8_t size)
{
struct mesh_friend *frnd = NULL;
struct mesh_friend_msg *frnd_msg = NULL;
uint8_t cnt;
uint8_t segN = hdr & 0x1f;
uint8_t segO = ((hdr >> 5) & 0x1f);
uint32_t expected = 0xffffffff >> (31 - segN);
uint32_t this_seg_flag = 0x00000001 << segO;
uint32_t largest = (0xffffffff << segO) & expected;
uint32_t hdr_key = hdr & HDR_KEY_MASK;
frnd = l_queue_find(net->friends, match_frnd_dst,
L_UINT_TO_PTR(dst));
if (!frnd)
return;
if (frnd->last_hdr == hdr_key) {
/* We are no longer receiving this msg. Resend final ACK */
send_frnd_ack(net, dst, src, frnd->last_hdr, 0xffffffff);
return;
}
/* Check if we have a SAR-in-progress that matches incoming segment */
frnd_msg = l_queue_find(net->frnd_msgs, match_frnd_sar_dst,
L_UINT_TO_PTR(dst));
if (frnd_msg) {
/* Flush if SZMICN or IV Index has changed */
if (frnd_msg->iv_index != iv_index)
frnd_msg->u.s12[0].hdr = 0;
/* Flush incomplete old SAR message if it doesn't match */
if ((frnd_msg->u.s12[0].hdr & HDR_KEY_MASK) != hdr_key) {
l_queue_remove(net->frnd_msgs, frnd_msg);
l_free(frnd_msg);
frnd_msg = NULL;
}
}
if (!frnd_msg) {
frnd_msg = mesh_friend_msg_new(segN);
frnd_msg->iv_index = iv_index;
frnd_msg->src = src;
frnd_msg->dst = dst;
frnd_msg->ttl = ttl;
l_queue_push_tail(net->frnd_msgs, frnd_msg);
} else if (frnd_msg->flags & this_seg_flag) /* Ignore dup segs */
return;
cnt = frnd_msg->cnt_in;
frnd_msg->flags |= this_seg_flag;
frnd_msg->u.s12[cnt].hdr = hdr;
frnd_msg->u.s12[cnt].seq = seq;
memcpy(frnd_msg->u.s12[cnt].data, data, size);
/* Last segment could be short */
if (segN == segO)
frnd_msg->last_len = size;
l_info("RXed Seg %d, Flags %8.8x (cnt: %d)",
segO, frnd_msg->flags, cnt);
/* In reality, if one of these is true, then *both* must be true */
if ((cnt == segN) || (frnd_msg->flags == expected)) {
l_info("Full ACK");
send_frnd_ack(net, dst, src, hdr, frnd_msg->flags);
if (frnd_msg->ttl > 1) {
frnd_msg->ttl--;
/* Add to friends cache */
l_queue_foreach(net->friends,
enqueue_friend_pkt, frnd_msg);
}
/* Remove from "in progress" queue */
l_queue_remove(net->frnd_msgs, frnd_msg);
/* TODO Optimization(?): Unicast messages keep this buffer */
l_free(frnd_msg);
return;
}
/* Always ACK if this is the largest outstanding segment */
if ((largest & frnd_msg->flags) == largest) {
l_info("Partial ACK");
send_frnd_ack(net, dst, src, hdr, frnd_msg->flags);
}
frnd_msg->cnt_in++;
}
static bool seg_rxed(struct mesh_net *net, bool frnd,
uint32_t iv_index,
uint8_t ttl,
uint32_t seq,
uint16_t src, uint16_t dst,
uint8_t key_id,
bool szmic, uint16_t seqZero,
uint8_t segO, uint8_t segN,
const uint8_t *data, uint8_t size)
{
struct mesh_sar *sar_in = NULL;
uint16_t seg_off = 0;
uint32_t expected, this_seg_flag, largest, seqAuth;
bool reset_seg_to = true;
/*
* DST could receive additional Segments after
* completing due to a lost ACK, so re-ACK and discard
*/
sar_in = l_queue_find(net->sar_in, match_sar_remote,
L_UINT_TO_PTR(src));
/* Discard *old* incoming-SAR-in-progress if this segment newer */
seqAuth = seq_auth(seq, seqZero);
if (sar_in && (sar_in->seqAuth != seqAuth ||
sar_in->iv_index != iv_index)) {
bool newer;
if (iv_index > sar_in->iv_index)
newer = true;
else if (iv_index == sar_in->iv_index)
newer = seqAuth > sar_in->seqAuth;
else
newer = false;
if (newer) {
/* Cancel Old, start New */
l_queue_remove(net->sar_in, sar_in);
mesh_sar_free(sar_in);
sar_in = NULL;
} else
/* Ignore Old */
return false;
}
expected = 0xffffffff >> (31 - segN);
if (sar_in) {
l_info("RXed (old: %04x %06x size:%d) %d of %d",
seqZero, seq, size, segO, segN);
/* Sanity Check--> certain things must match */
if (SEG_MAX(sar_in->len) != segN ||
sar_in->key_id != key_id)
return false;
if (sar_in->flags == expected) {
/* Re-Send ACK for full msg */
if (!net->friend_addr)
send_net_ack(net, sar_in, expected);
return true;
}
} else {
uint16_t len = MAX_SEG_TO_LEN(segN);
l_info("RXed (new: %04x %06x size: %d len: %d) %d of %d",
seqZero, seq, size, len, segO, segN);
l_debug("Queue Size: %d", l_queue_length(net->sar_in));
sar_in = mesh_sar_new(len);
sar_in->seqAuth = seqAuth;
sar_in->iv_index = iv_index;
sar_in->src = dst;
sar_in->remote = src;
sar_in->seqZero = seqZero;
sar_in->key_id = key_id;
sar_in->len = len;
sar_in->last_seg = 0xff;
if (!net->friend_addr)
sar_in->msg_timeout = l_timeout_create(MSG_TO,
inmsg_to, net, NULL);
l_debug("First Seg %4.4x", sar_in->flags);
l_queue_push_head(net->sar_in, sar_in);
}
/* print_packet("Seg", data, size); */
seg_off = segO * MAX_SEG_LEN;
memcpy(sar_in->buf + seg_off, data, size);
this_seg_flag = 0x00000001 << segO;
/* Don't reset Seg TO or NAK if we already have this seg */
if (this_seg_flag & sar_in->flags)
reset_seg_to = false;
sar_in->flags |= this_seg_flag;
sar_in->ttl = ttl;
l_debug("Have Frags %4.4x", sar_in->flags);
/* Msg length only definitive on last segment */
if (segO == segN)
sar_in->len = segN * MAX_SEG_LEN + size;
if (sar_in->flags == expected) {
/* Got it all */
if (!net->friend_addr)
send_net_ack(net, sar_in, expected);
msg_rxed(net, frnd,
iv_index,
ttl,
seq,
sar_in->remote, dst,
key_id,
szmic, sar_in->seqZero,
sar_in->buf, sar_in->len);
/* Kill Inter-Seg timeout */
l_timeout_remove(sar_in->seg_timeout);
sar_in->seg_timeout = NULL;
return true;
} else if (reset_seg_to) {
/* Restart Inter-Seg Timeout */
l_timeout_remove(sar_in->seg_timeout);
/* if this is the largest outstanding segment, send NAK now */
if (!net->friend_addr) {
largest = (0xffffffff << segO) & expected;
if ((largest & sar_in->flags) == largest)
send_net_ack(net, sar_in, sar_in->flags);
sar_in->seg_timeout = l_timeout_create(SEG_TO,
inseg_to, net, NULL);
}
}
l_debug("NAK: %d expected:%08x largest:%08x flags:%08x",
reset_seg_to, expected, largest, sar_in->flags);
return false;
}
static bool ctl_received(struct mesh_net *net, bool frnd, uint32_t iv_index,
uint8_t ttl,
uint32_t seq,
uint16_t src, uint16_t dst,
uint8_t opcode, int8_t rssi,
const uint8_t *pkt, uint8_t len)
{
uint8_t msg[12];
uint8_t rsp_ttl = DEFAULT_TTL;
uint8_t n = 0;
if (!frnd && ttl > 1) {
uint32_t hdr = opcode << OPCODE_HDR_SHIFT;
uint8_t frnd_ttl = ttl - 1;
if (friend_packet_queue(net, iv_index,
true, frnd_ttl,
seq,
src, dst,
hdr,
pkt, len))
return true;
}
/* Don't process other peoples Unicast destinations */
if (dst < 0x8000 && (dst < net->src_addr || dst > net->last_addr))
return false;
switch (opcode) {
default:
l_error("Unsupported Ctl Opcode: %2.2x", opcode);
break;
case NET_OP_FRND_POLL:
if (len != 1 || ttl)
return false;
print_packet("Rx-NET_OP_FRND_POLL", pkt, len);
friend_poll(net, src, !!(pkt[0]),
l_queue_find(net->friends,
match_by_friend,
L_UINT_TO_PTR(src)));
break;
case NET_OP_FRND_UPDATE:
if (ttl)
return false;
print_packet("Rx-NET_OP_FRND_UPDATE", pkt, len);
lpn_process_beacon(net, pkt, len, 0);
break;
case NET_OP_FRND_REQUEST:
if (!net->friend_enable)
return false;
if (!IS_ALL_NODES(dst) && dst != FRIENDS_ADDRESS)
return false;
if (len != 10 || ttl)
return false;
print_packet("Rx-NET_OP_FRND_REQUEST", pkt, len);
friend_request(net, src, pkt[0], pkt[1],
l_get_be32(pkt + 1) & 0xffffff,
l_get_be16(pkt + 5), pkt[7],
l_get_be16(pkt + 8), rssi);
break;
case NET_OP_FRND_OFFER:
if (len != 6 || ttl)
return false;
print_packet("Rx-NET_OP_FRND_OFFER", pkt, len);
frnd_offer(net, src, pkt[0], pkt[1], pkt[2],
(int8_t) pkt[3], rssi, l_get_be16(pkt + 4));
break;
case NET_OP_FRND_CLEAR_CONFIRM:
if (len != 4)
return false;
print_packet("Rx-NET_OP_FRND_CLEAR_CONFIRM", pkt, len);
friend_clear_confirm(net, src, l_get_be16(pkt),
l_get_be16(pkt + 2));
break;
case NET_OP_FRND_CLEAR:
if (len != 4 || dst != net->src_addr)
return false;
print_packet("Rx-NET_OP_FRND_CLEAR", pkt, len);
friend_clear(net, src, l_get_be16(pkt), l_get_be16(pkt + 2),
l_queue_find(net->friends,
match_by_friend,
L_UINT_TO_PTR(l_get_be16(pkt))));
l_info("Remaining Friends: %d", l_queue_length(net->friends));
break;
case NET_OP_PROXY_SUB_ADD:
if (ttl)
return false;
print_packet("Rx-NET_OP_PROXY_SUB_ADD", pkt, len);
friend_sub_add(net, l_queue_find(net->friends,
match_by_friend, L_UINT_TO_PTR(src)),
pkt, len);
break;
case NET_OP_PROXY_SUB_REMOVE:
if (ttl)
return false;
print_packet("Rx-NET_OP_PROXY_SUB_REMOVE", pkt, len);
friend_sub_del(net, l_queue_find(net->friends,
match_by_friend, L_UINT_TO_PTR(src)),
pkt, len);
break;
case NET_OP_PROXY_SUB_CONFIRM:
if (ttl)
return false;
print_packet("Rx-NET_OP_PROXY_SUB_CONFIRM", pkt, len);
break;
case NET_OP_HEARTBEAT:
if (net->heartbeat.sub_enabled &&
src == net->heartbeat.sub_src) {
uint8_t hops = pkt[0] - ttl + 1;
print_packet("Rx-NET_OP_HEARTBEAT", pkt, len);
if (net->heartbeat.sub_count != 0xffff)
net->heartbeat.sub_count++;
if (net->heartbeat.sub_min_hops > hops)
net->heartbeat.sub_min_hops = hops;
if (net->heartbeat.sub_max_hops < hops)
net->heartbeat.sub_max_hops = hops;
l_info("HB: cnt:%4.4x min:%2.2x max:%2.2x",
net->heartbeat.sub_count,
net->heartbeat.sub_min_hops,
net->heartbeat.sub_max_hops);
}
break;
}
if (n) {
mesh_net_transport_send(net, NULL, false,
mesh_net_get_iv_index(net), rsp_ttl,
0, dst & 0x8000 ? 0 : dst, src,
msg, n);
}
return true;
}
static bool find_fast_hash(const void *a, const void *b)
{
const uint64_t *entry = a;
const uint64_t *test = b;
return *entry == *test;
}
static void *check_fast_cache(struct mesh_net *net, uint64_t hash)
{
void *found = l_queue_find(net->fast_cache, find_fast_hash, &hash);
uint64_t *new_hash;
if (found)
return NULL;
if (l_queue_length(net->fast_cache) >= 8)
new_hash = l_queue_pop_head(net->fast_cache);
else
new_hash = l_malloc(sizeof(hash));
*new_hash = hash;
l_queue_push_tail(net->fast_cache, new_hash);
return new_hash;
}
static bool match_keyset(const void *a, const void *b)
{
const struct mesh_friend *frnd = a;
const struct mesh_key_set *key_set = b;
return (key_set == &frnd->key_set) || (key_set == &frnd->new_key_set);
}
static void try_decode(void *a, void *b)
{
struct mesh_key_set *key_set = a;
struct net_decode *decode = b;
uint8_t tmp[29];
bool status;
if (decode->key_set || key_set->nid != decode->nid)
return;
status = mesh_crypto_packet_decode(decode->packet, decode->size,
decode->proxy, tmp, decode->iv_index,
key_set->enc_key, key_set->privacy_key);
if (!status)
return;
memcpy(decode->packet, tmp, decode->size);
decode->key_set = key_set;
if (key_set->frnd)
decode->frnd = l_queue_find(decode->net->friends,
match_keyset, key_set);
else
decode->frnd = NULL;
}
static struct mesh_key_set *net_packet_decode(struct mesh_net *net,
uint32_t iv_index, uint8_t nid,
struct mesh_friend **frnd,
bool proxy,
uint8_t *packet, uint8_t size)
{
struct net_decode decode = {
.net = net,
.key_set = NULL,
.nid = nid,
.iv_index = iv_index,
.packet = packet,
.size = size,
.proxy = proxy,
};
l_queue_foreach(net->key_sets, try_decode, &decode);
if (decode.key_set != NULL) {
*frnd = decode.frnd;
return decode.key_set;
}
return NULL;
}
static bool match_key_nid(const void *a, const void *b)
{
const struct mesh_key_set *key_set = a;
uint8_t nid = L_PTR_TO_UINT(b);
return key_set->nid == nid;
}
static bool match_by_dst(const void *a, const void *b)
{
const struct mesh_destination *dest = a;
uint16_t dst = L_PTR_TO_UINT(b);
return dest->dst == dst;
}
static void send_relay_pkt(struct mesh_net *net, uint8_t *packet, uint8_t size)
{
struct mesh_io *io = net->io;
struct mesh_io_send_info info = {
.type = MESH_IO_TIMING_TYPE_GENERAL,
.u.gen.interval = net->relay.interval,
.u.gen.cnt = net->relay.count,
.u.gen.min_delay = DEFAULT_MIN_DELAY,
.u.gen.max_delay = DEFAULT_MAX_DELAY
};
packet[0] = MESH_AD_TYPE_NETWORK;
mesh_io_send(io, &info, packet, size);
}
static void send_msg_pkt(struct mesh_net *net, uint8_t *packet, uint8_t size)
{
struct mesh_io *io = net->io;
struct mesh_io_send_info info = {
.type = MESH_IO_TIMING_TYPE_GENERAL,
.u.gen.interval = net->tx_interval,
.u.gen.cnt = net->tx_cnt,
.u.gen.min_delay = DEFAULT_MIN_DELAY,
/* No extra randomization when sending regular mesh messages */
.u.gen.max_delay = DEFAULT_MIN_DELAY
};
packet[0] = MESH_AD_TYPE_NETWORK;
mesh_io_send(io, &info, packet, size);
}
static void packet_received(void *user_data, const void *data, uint8_t size,
int8_t rssi)
{
struct mesh_net *net = user_data;
uint32_t iv_index;
uint8_t iv_flag;
uint8_t nid;
const uint8_t *msg = data;
uint8_t app_msg_len;
uint8_t net_ttl, net_key_id, net_segO, net_segN, net_opcode;
uint32_t net_seq, cache_cookie;
uint16_t net_src, net_dst, net_seqZero;
uint8_t packet[31];
bool net_ctl, net_segmented, net_szmic, net_relay;
struct mesh_friend *net_frnd;
bool drop = false;
uint64_t hash, *isNew = NULL;
struct mesh_key_set *keys;
nid = msg[0] & 0x7f;
/* Ignore unrecognized NIDs */
if (!(l_queue_find(net->key_sets, match_key_nid, L_UINT_TO_PTR(nid)))) {
/* print_packet("Nope", data, size); */
return;
}
iv_flag = msg[0] >> 7;
iv_index = net->iv_index;
l_debug("%s iv_index %d NID: %2.2x", __func__, iv_index, nid);
if (sizeof(uint16_t) <= sizeof(void *)) {
/* Add in additional cache to allow us to
* avoid decrypting duplicatesr
* Fast 64 bit Hash, Network MIC doesn't matter
* With 64 bit hash, false pos chance is 1 in 1.8 * 10^19
*/
hash = l_get_le64(msg + 1) ^ l_get_le64(msg + 9);
isNew = check_fast_cache(net, hash);
if (!isNew)
return;
l_debug("New");
}
memcpy(packet + 2, data, size);
if (iv_index && (iv_index & 0x01) != iv_flag)
iv_index--;
/* Tester--Drop 90% of packets */
/* l_getrandom(&iv_flag, 1); */
/* if (iv_flag%10<9) drop = true; */
if (!drop)
print_packet("RX: Network [enc] :", data, size);
keys = net_packet_decode(net, iv_index, nid, &net_frnd, false,
packet + 2, size);
if (keys == NULL) {
l_debug("Failed to decode packet");
/* Remove fast-cache-hash */
l_queue_remove(net->fast_cache, isNew);
l_free(isNew);
return;
}
if (!drop)
print_packet("RX: Network [clr] :", packet + 2, size);
if (!mesh_crypto_packet_parse(packet + 2, size,
&net_ctl, &net_ttl,
&net_seq,
&net_src, &net_dst,
&cache_cookie,
&net_opcode,
&net_segmented,
&net_key_id,
&net_szmic, &net_relay, &net_seqZero,
&net_segO, &net_segN,
&msg, &app_msg_len)) {
l_error("Failed to parse packet content");
return;
}
/* Ignore incoming packets if we are LPN and frnd bit not set */
if (net->friend_addr) {
struct mesh_subnet *subnet;
subnet = l_queue_find(net->subnets, match_key_set, keys);
if (subnet)
return;
/* If the queue is empty, stop polling */
if (net_ctl && net_opcode == NET_OP_FRND_UPDATE && !msg[5])
frnd_poll_cancel(net);
else
frnd_poll(net, false);
} else if (net_dst == 0) {
l_error("illegal parms: DST: %4.4x Ctl: %d TTL: %2.2x",
net_dst, net_ctl, net_ttl);
return;
}
/* Ignore if we originally sent this */
if (is_us(net, net_src, true))
return;
if (drop) {
l_info("Dropping SEQ 0x%06x", net_seq);
return;
}
l_debug("check %08x", cache_cookie);
/* As a Relay, suppress repeats of last N packets that pass through */
/* The "cache_cookie" should be unique part of App message */
if (msg_in_cache(net, net_src, net_seq, cache_cookie))
return;
l_debug("RX: Network %04x -> %04x : TTL 0x%02x : IV : %8.8x SEQ 0x%06x",
net_src, net_dst, net_ttl, iv_index, net_seq);
if (is_us(net, net_dst, false) ||
is_lpn_friend(net, net_src, !!(net_frnd)) ||
(net_ctl && net_opcode == NET_OP_HEARTBEAT)) {
l_info("RX: App 0x%04x -> 0x%04x : TTL 0x%02x : SEQ 0x%06x",
net_src, net_dst, net_ttl, net_seq);
l_debug("seq:%x seq0:%x", net_seq, net_seqZero);
if (net_ctl) {
l_debug("CTL - %4.4x RX", net_seqZero);
if (net_opcode == NET_OP_SEG_ACKNOWLEDGE) {
/* Illegal to send ACK to non-Unicast Addr */
if (net_dst & 0x8000)
return;
/* print_packet("Got ACK", msg, app_msg_len); */
/* Pedantic check for correct size */
if (app_msg_len != 7)
return;
/* If this is an ACK to our friend queue-only */
if (is_lpn_friend(net, net_dst, true))
friend_ack_rxed(net, iv_index, net_seq,
net_src, net_dst,
msg);
else
ack_received(net, false,
net_src, net_dst,
net_seqZero,
l_get_be32(msg + 3));
} else {
ctl_received(net, !!(net_frnd), iv_index,
net_ttl, net_seq, net_src,
net_dst, net_opcode, rssi,
msg, app_msg_len);
}
} else if (net_segmented) {
/* If we accept SAR packets to non-Unicast, then
* Friend Sar at least needs to be Unicast Only
*/
if (is_lpn_friend(net, net_dst, true) &&
!(net_dst & 0x8000)) {
/* Check TTL >= 2 before accepting segments
* for Friends
*/
if (net_ttl >= 2) {
friend_seg_rxed(net, iv_index,
net_ttl, net_seq,
net_src, net_dst,
l_get_be32(packet + 2 + 9),
msg, app_msg_len);
}
} else {
seg_rxed(net, net_frnd,
iv_index,
net_ttl,
net_seq,
net_src, net_dst,
net_key_id,
net_szmic, net_seqZero,
net_segO, net_segN,
msg, app_msg_len);
}
} else {
msg_rxed(net, net_frnd,
iv_index,
net_ttl,
net_seq,
net_src, net_dst,
net_key_id,
false, net_seq & SEQ_ZERO_MASK,
msg, app_msg_len);
}
if (!!(net_frnd))
l_info("Ask for more data!");
/* If this is one of our Unicast addresses, don't relay */
if (net_dst <= 0x7fff)
return;
}
if (!net->relay.enable || net_ttl < 0x02 || net_frnd)
return;
packet[2 + 1] = (packet[2 + 1] & ~TTL_MASK) | (net_ttl - 1);
if (!mesh_crypto_packet_encode(packet + 2, size, keys->enc_key,
iv_index, keys->privacy_key)) {
l_error("Failed to encode relay packet");
return;
}
if (net->relay.enable)
send_relay_pkt(net, packet, size + 1);
}
static void net_msg_recv(void *user_data, struct mesh_io_recv_info *info,
const uint8_t *data, uint16_t len)
{
struct mesh_net *net = user_data;
int8_t rssi = 0;
if (len <= 2 || !net)
return;
if (info) {
net->instant = info->instant;
net->chan = info->chan;
rssi = info->rssi;
}
packet_received(user_data, data + 1, len - 1, rssi);
}
static void set_network_beacon(void *a, void *b)
{
struct mesh_subnet *subnet = a;
struct mesh_net *net = b;
uint8_t beacon_data[22];
if (!create_secure_beacon(net, subnet, beacon_data,
sizeof(beacon_data)))
return;
if (memcmp(&subnet->snb.beacon[1], beacon_data,
sizeof(beacon_data)) == 0)
return;
memcpy(&subnet->snb.beacon[1], beacon_data, sizeof(beacon_data));
if (net->beacon_enable && !net->friend_addr) {
print_packet("Set My Beacon to",
beacon_data, sizeof(beacon_data));
start_network_beacon(subnet, net);
}
if (l_queue_length(net->friends)) {
struct mesh_friend_msg update = {
.src = net->src_addr,
.iv_index = mesh_net_get_iv_index(net),
.last_len = 7,
.ctl = true,
};
update.u.one[0].hdr = NET_OP_FRND_UPDATE << OPCODE_HDR_SHIFT;
update.u.one[0].seq = mesh_net_next_seq_num(net);
update.u.one[0].data[0] = NET_OP_FRND_UPDATE;
update.u.one[0].data[1] = beacon_data[3];
l_put_be32(net->iv_index, update.u.one[0].data + 2);
update.u.one[0].data[6] = 0x01; /* More Data */
/* print_packet("Frnd-Beacon-SRC",
* beacon_data, sizeof(beacon_data));
*/
/* print_packet("Frnd-Update", update.u.one[0].data, 6); */
l_queue_foreach(net->friends, enqueue_update, &update);
}
}
static void iv_upd_to(struct l_timeout *upd_timeout, void *user_data)
{
struct mesh_net *net = user_data;
switch (net->iv_upd_state) {
case IV_UPD_UPDATING:
if (l_queue_length(net->sar_out)) {
l_info("don't leave IV Update until sar_out empty");
l_timeout_modify(net->iv_update_timeout, 10);
break;
}
l_info("iv_upd_state = IV_UPD_NORMAL_HOLD");
net->iv_upd_state = IV_UPD_NORMAL_HOLD;
l_timeout_modify(net->iv_update_timeout, IV_IDX_UPD_MIN);
mesh_net_set_seq_num(net, 0);
l_queue_foreach(net->subnets, set_network_beacon, net);
mesh_net_flush_msg_queues(net);
break;
case IV_UPD_INIT:
case IV_UPD_NORMAL_HOLD:
case IV_UPD_NORMAL:
l_timeout_remove(upd_timeout);
net->iv_update_timeout = NULL;
l_info("iv_upd_state = IV_UPD_NORMAL");
net->iv_upd_state = IV_UPD_NORMAL;
if (net->seq_num > IV_UPDATE_SEQ_TRIGGER)
mesh_net_iv_index_update(net);
break;
}
}
static void update_iv_kr_state(struct mesh_subnet *subnet, uint32_t iv_index,
bool iv_update, bool kr_transition,
bool rxed_key_refresh, bool lpn)
{
struct mesh_net *net = subnet->net;
uint8_t local_kr;
uint32_t local_iv_index;
bool local_iv_update;
/* Save original settings to avoid resetting same values,
* and secure beacon timer
*/
local_iv_index = net->iv_index;
local_kr = subnet->key_refresh;
local_iv_update = iv_is_updating(net);
if (iv_index != local_iv_index || kr_transition)
l_info("SNB-RX: %8.8x - Key Refresh: %d IV Update: %d",
iv_index, rxed_key_refresh, iv_update);
if (iv_update && (net->iv_upd_state > IV_UPD_UPDATING)) {
if (iv_index != net->iv_index)
l_error("Update attempted to0 soon (Normal < MIN)");
return;
}
if (net->iv_upd_state == IV_UPD_INIT) {
if (iv_index > net->iv_index)
mesh_net_set_seq_num(net, 0);
net->iv_index = iv_index;
if (iv_update) {
/* Other devices will be accepting old or new iv_index,
* but we don't know how far through update they are.
* Starting permissive state will allow us maximum
* (96 hours) to resync
*/
l_info("iv_upd_state = IV_UPD_UPDATING");
net->iv_upd_state = IV_UPD_UPDATING;
net->iv_update_timeout = l_timeout_create(
IV_IDX_UPD_MIN, iv_upd_to, net, NULL);
} else {
l_info("iv_upd_state = IV_UPD_NORMAL");
net->iv_upd_state = IV_UPD_NORMAL;
}
storage_local_set_iv_index(net, iv_index, net->iv_upd_state);
/* Figure out the key refresh phase */
if (kr_transition) {
if (rxed_key_refresh)
mesh_net_key_refresh_phase_two(net,
subnet->idx);
else
mesh_net_key_refresh_finish(net, subnet->idx);
}
if (!lpn)
set_network_beacon(subnet, net);
return;
}
if (iv_update && !iv_is_updating(net)) {
l_info("iv_upd_state = IV_UPD_UPDATING");
net->iv_upd_state = IV_UPD_UPDATING;
net->iv_update_timeout = l_timeout_create(IV_IDX_UPD_MIN,
iv_upd_to, net, NULL);
storage_local_set_iv_index(net, iv_index, net->iv_upd_state);
} else if (iv_update && iv_index != net->iv_index) {
l_error("Update attempted too soon (iv idx already updated)");
return;
}
if (iv_index != local_iv_index || kr_transition)
l_info("IVindex 0x%8.8x / Key Refresh update received",
iv_index);
if (iv_index > net->iv_index) {
l_queue_clear(net->msg_cache, mesh_msg_free);
net->iv_index = iv_index;
storage_local_set_iv_index(net, iv_index, net->iv_upd_state);
}
/* Figure out the key refresh phase */
if (kr_transition) {
if (rxed_key_refresh)
mesh_net_key_refresh_phase_two(net, subnet->idx);
else
mesh_net_key_refresh_finish(net, subnet->idx);
}
if (!lpn)
return;
if (local_kr != subnet->key_refresh ||
local_iv_index != net->iv_index ||
local_iv_update != iv_is_updating(net))
set_network_beacon(subnet, net);
}
static void process_beacon(void *user_data, const void *data,
uint8_t size, int8_t rssi)
{
struct mesh_net *net = user_data;
const uint8_t *buf = data;
uint32_t iv_index;
uint64_t cmac;
bool iv_update, rxed_iv_update, rxed_key_refresh;
struct mesh_subnet *subnet;
struct net_key *keys;
bool kr_transition = false;
if (size != 22 || buf[0] != 0x01)
return;
/* print_packet("Secure Net Beacon RXed", data, size); */
rxed_key_refresh = (buf[1] & 0x01) == 0x01;
rxed_iv_update = iv_update = (buf[1] & 0x02) == 0x02;
iv_index = l_get_be32(buf + 10);
l_debug("KR: %d -- IVU: %d -- IV: %8.8x",
rxed_key_refresh, rxed_iv_update, iv_index);
/* Inhibit recognizing iv_update true-->false
* if we have outbound SAR messages in flight
*/
if (l_queue_length(net->sar_out)) {
if (!iv_update && iv_update != iv_is_updating(net))
iv_update = true;
}
subnet = l_queue_find(net->subnets, match_network_id, buf + 2);
if (!subnet)
return;
/* Check if Key Refresh flag value is different from
* the locally stored one
*/
if (rxed_key_refresh != subnet->key_refresh)
kr_transition = true;
/* If the local node is a provisioner or there are no new keys,
* ignore KR beacon setting
*/
if (net->provisioner)
kr_transition = false;
else if (subnet->updated.key_set.nid == NET_NID_INVALID)
kr_transition = false;
/* If beacon's key refresh bit is not set and the beacon is encoded
* with the "new" network key, this signals transition from
* key refresh procedure to normal operation
*/
else if (!rxed_key_refresh &&
!memcmp(subnet->updated.network_id, buf + 2, 8))
kr_transition = true;
if ((net->iv_index + IV_IDX_DIFF_RANGE < iv_index) ||
(iv_index < net->iv_index)) {
l_info("iv index outside range");
return;
}
/* Don't bother going further if nothing has changed */
if (!memcmp(&subnet->snb.beacon[1], buf, size)) {
subnet->snb.observed++;
return;
}
if (!rxed_key_refresh && !subnet->key_refresh && !kr_transition)
keys = &subnet->current;
else if (subnet->updated.key_set.nid != NET_NID_INVALID)
keys = &subnet->updated;
else
return;
if (memcmp(keys->network_id, buf + 2, 8))
return;
/* Any behavioral changes must pass CMAC test */
if (!mesh_crypto_beacon_cmac(keys->beacon_key, keys->network_id,
iv_index, rxed_key_refresh,
rxed_iv_update, &cmac)) {
l_error("mesh_crypto_beacon_cmac failed");
return;
}
if (cmac != l_get_be64(buf + 14)) {
l_error("cmac compare failed %16.16lx != %16.16lx",
cmac, l_get_be64(buf + 14));
return;
}
if (iv_index == net->iv_index &&
iv_is_updating(net) == iv_update && !kr_transition) {
l_info("No change: IV index %4.4x, rxed KR = %d ",
iv_index, rxed_key_refresh);
if (net->iv_upd_state == IV_UPD_INIT) {
l_info("iv_upd_state = IV_UPD_NORMAL");
net->iv_upd_state = IV_UPD_NORMAL;
}
subnet->snb.observed++;
return;
}
subnet->snb.observed++;
update_iv_kr_state(subnet, iv_index, iv_update, kr_transition,
rxed_key_refresh, false);
}
static void lpn_process_beacon(void *user_data, const void *data,
uint8_t size, int8_t rssi)
{
struct mesh_net *net = user_data;
const uint8_t *buf = data;
uint32_t iv_index;
bool iv_update, rxed_key_refresh;
struct mesh_subnet *subnet;
bool kr_transition = false;
/* print_packet("lpn: Secure Net Beacon RXed", data, size); */
rxed_key_refresh = (buf[0] & 0x01) == 0x01;
iv_index = l_get_be32(buf + 1);
l_debug("KR: %d -- IVU: %d -- IV: %8.8x",
rxed_key_refresh, iv_index);
/* Inhibit recognizing iv_update true-->false if we have outbound
* SAR messages in flight
*/
if (l_queue_length(net->sar_out)) {
if (!iv_update && iv_update != iv_is_updating(net))
iv_update = true;
}
/* TODO: figure out actual network index (i.e., friendship subnet) */
subnet = get_primary_subnet(net);
if (!subnet)
return;
/* Check if Key Refresh flag value is different from
* the locally stored one
*/
if (rxed_key_refresh != subnet->key_refresh)
kr_transition = true;
/* If the local node is a provisioner or there are no new keys,
* ignore KR beacon setting
*/
if (subnet->updated.key_set.nid == NET_NID_INVALID)
kr_transition = false;
if ((net->iv_index + IV_IDX_DIFF_RANGE < iv_index) ||
(iv_index < net->iv_index)) {
l_info("iv index outside range");
return;
}
/* Don't bother going further if nothing has changed */
if (!kr_transition && iv_index == net->iv_index &&
iv_update == iv_is_updating(net) &&
net->iv_upd_state != IV_UPD_INIT)
return;
if (iv_index == net->iv_index &&
iv_is_updating(net) == iv_update && !kr_transition) {
l_info("No change: IV index %4.4x, rxed KR = %d ",
iv_index, rxed_key_refresh);
if (net->iv_upd_state == IV_UPD_INIT) {
l_info("iv_upd_state = IV_UPD_NORMAL");
net->iv_upd_state = IV_UPD_NORMAL;
}
return;
}
update_iv_kr_state(subnet, iv_index, iv_update, kr_transition,
rxed_key_refresh, true);
}
static void beacon_recv(void *user_data, struct mesh_io_recv_info *info,
const uint8_t *data, uint16_t len)
{
struct mesh_net *net = user_data;
int8_t rssi = 0;
if (len <= 2 || !net)
return;
if (info) {
net->instant = info->instant;
net->chan = info->chan;
rssi = info->rssi;
}
process_beacon(user_data, data + 1, len - 1, rssi);
}
bool mesh_net_set_beacon_mode(struct mesh_net *net, bool enable)
{
if (!net || !IS_UNASSIGNED(net->friend_addr))
return false;
if (net->beacon_enable != enable) {
uint8_t type = MESH_AD_TYPE_BEACON;
net->beacon_enable = enable;
if (!enable)
mesh_io_send_cancel(net->io, &type, 1);
l_queue_foreach(net->subnets, start_network_beacon, net);
}
return true;
}
bool mesh_net_attach(struct mesh_net *net, struct mesh_io *io)
{
if (!net)
return false;
net->io = io;
if (net->provisioned) {
mesh_io_register_recv_cb(io, MESH_IO_FILTER_BEACON,
beacon_recv, net);
mesh_io_register_recv_cb(io, MESH_IO_FILTER_NET,
net_msg_recv, net);
l_queue_foreach(net->subnets, start_network_beacon, net);
} else {
uint8_t *uuid = node_uuid_get(net->local_node);
if (!uuid)
return false;
mesh_io_deregister_recv_cb(io, MESH_IO_FILTER_BEACON);
mesh_io_deregister_recv_cb(io, MESH_IO_FILTER_NET);
mesh_prov_listen(net, uuid, (uint8_t *) &net->prov_caps,
acceptor_prov_open,
acceptor_prov_close,
acceptor_prov_receive, net);
}
return true;
}
struct mesh_io *mesh_net_detach(struct mesh_net *net)
{
struct mesh_io *io;
uint8_t type = 0;
if (!net)
return NULL;
io = net->io;
mesh_io_send_cancel(net->io, &type, 1);
mesh_io_deregister_recv_cb(io, MESH_IO_FILTER_BEACON);
mesh_io_deregister_recv_cb(io, MESH_IO_FILTER_NET);
net->io = NULL;
return io;
}
bool mesh_net_iv_index_update(struct mesh_net *net)
{
if (net->iv_upd_state != IV_UPD_NORMAL)
return false;
l_info("iv_upd_state = IV_UPD_UPDATING");
mesh_net_flush_msg_queues(net);
net->iv_upd_state = IV_UPD_UPDATING;
net->iv_index++;
if (!storage_local_set_iv_index(net, net->iv_index, IV_UPD_UPDATING))
return false;
l_queue_foreach(net->subnets, set_network_beacon, net);
net->iv_update_timeout = l_timeout_create(
IV_IDX_UPD_MIN,
iv_upd_to, net, NULL);
return true;
}
void mesh_net_sub_list_add(struct mesh_net *net, uint16_t addr)
{
uint8_t msg[11] = { PROXY_OP_FILTER_ADD };
uint8_t n = 1;
l_put_be16(addr, msg + n);
n += 2;
mesh_net_transport_send(net, NULL, false,
mesh_net_get_iv_index(net), 0,
0, 0, 0, msg, n);
}
void mesh_net_sub_list_del(struct mesh_net *net, uint16_t addr)
{
uint8_t msg[11] = { PROXY_OP_FILTER_DEL };
uint8_t n = 1;
l_put_be16(addr, msg + n);
n += 2;
mesh_net_transport_send(net, NULL, false,
mesh_net_get_iv_index(net), 0,
0, 0, 0, msg, n);
}
/* TODO: change to use net index */
bool mesh_net_set_friend(struct mesh_net *net, uint16_t friend_addr)
{
if (!net)
return false;
net->bea_id = 0;
l_info("Set Frnd addr: %4.4x", friend_addr);
if (!friend_addr)
trigger_heartbeat(net, FEATURE_LPN, false);
else
trigger_heartbeat(net, FEATURE_LPN, true);
net->friend_addr = friend_addr;
set_network_beacon(get_primary_subnet(net), net);
return true;
}
uint16_t mesh_net_get_friend(struct mesh_net *net)
{
if (!net)
return 0;
return net->friend_addr;
}
bool mesh_net_dst_reg(struct mesh_net *net, uint16_t dst)
{
struct mesh_destination *dest = l_queue_find(net->destinations,
match_by_dst, L_UINT_TO_PTR(dst));
if (IS_UNASSIGNED(dst) || IS_ALL_NODES(dst))
return false;
if (!dest) {
dest = l_new(struct mesh_destination, 1);
if (dst < 0x8000)
l_queue_push_head(net->destinations, dest);
else
l_queue_push_tail(net->destinations, dest);
/* If LPN, and Group/Virtual, add to Subscription List */
if (net->friend_addr) {
/* TODO: Fix this garbage */
uint32_t u32_dst[7] = {dst, 0xffffffff};
frnd_sub_add(net, u32_dst);
}
}
dest->dst = dst;
dest->ref_cnt++;
return true;
}
bool mesh_net_dst_unreg(struct mesh_net *net, uint16_t dst)
{
struct mesh_destination *dest = l_queue_find(net->destinations,
match_by_dst, L_UINT_TO_PTR(dst));
if (!dest)
return false;
if (dest->ref_cnt)
dest->ref_cnt--;
if (dest->ref_cnt)
return true;
/* TODO: If LPN, and Group/Virtual, remove from Subscription List */
if (net->friend_addr) {
/* TODO: Fix this garbage */
uint32_t u32_dst[7] = {dst, 0xffffffff};
frnd_sub_del(net, u32_dst);
}
l_queue_remove(net->destinations, dest);
l_free(dest);
return true;
}
bool mesh_net_flush(struct mesh_net *net)
{
if (!net)
return false;
/* TODO mesh-io Flush */
return true;
}
/* TODO: add net key index */
static bool send_seg(struct mesh_net *net, struct mesh_sar *msg, uint8_t segO)
{
uint8_t seg_len;
uint8_t gatt_data[30];
uint8_t *packet = gatt_data;
uint8_t packet_len;
uint8_t segN = SEG_MAX(msg->len);
uint16_t seg_off = SEG_OFF(segO);
struct mesh_key_set *key_set = NULL;
uint32_t seq_num = mesh_net_next_seq_num(net);
if (segN) {
if (msg->len - seg_off > SEG_OFF(1))
seg_len = SEG_OFF(1);
else
seg_len = msg->len - seg_off;
} else {
seg_len = msg->len;
}
/* Start IV Update procedure when we hit our trigger point */
if (!msg->frnd && net->seq_num > IV_UPDATE_SEQ_TRIGGER)
mesh_net_iv_index_update(net);
l_debug("segN %d segment %d seg_off %d", segN, segO, seg_off);
/* print_packet("Sending", msg->buf + seg_off, seg_len); */
{
/* TODO: Are we RXing on an LPN's behalf? Then set RLY bit */
if (!mesh_crypto_packet_build(false, msg->ttl,
seq_num,
msg->src, msg->remote,
0,
segN ? true : false, msg->key_id,
msg->szmic, false, msg->seqZero,
segO, segN,
msg->buf + seg_off, seg_len,
packet + 1, &packet_len)) {
l_error("Failed to build packet");
return false;
}
}
print_packet("Clr-Net Tx", packet + 1, packet_len);
if (msg->frnd_cred && net->friend_addr)
key_set = frnd_get_key(net);
if (key_set == NULL) {
struct mesh_subnet *subnet = get_primary_subnet(net);
key_set = &subnet->tx->key_set;
}
if (!mesh_crypto_packet_encode(packet + 1, packet_len, key_set->enc_key,
msg->iv_index, key_set->privacy_key)) {
l_error("Failed to encode packet");
return false;
}
print_packet("Step 3", packet + 1, packet_len);
if (!mesh_crypto_packet_label(packet + 1, packet_len,
msg->iv_index, key_set->nid)) {
l_error("Failed to label packet");
return false;
}
/* print_packet("Step 4", packet + 1, packet_len); */
{
char *str;
send_msg_pkt(net, packet, packet_len + 1);
str = l_util_hexstring(packet + 1, packet_len);
l_info("TX: Network %04x -> %04x : %s (%u) : TTL %d : SEQ %06x",
msg->src, msg->remote, str,
packet_len, msg->ttl,
msg->frnd ? msg->seqAuth + segO : seq_num);
l_free(str);
}
msg->last_seg = segO;
return true;
}
void mesh_net_send_seg(struct mesh_net *net, struct mesh_key_set *key_set,
uint32_t iv_index,
uint8_t ttl,
uint32_t seq,
uint16_t src, uint16_t dst,
uint32_t hdr,
const void *seg, uint16_t seg_len)
{
char *str;
uint8_t packet[30];
uint8_t packet_len;
bool segmented = !!((hdr >> SEG_HDR_SHIFT) & true);
uint8_t key_id = (hdr >> KEY_HDR_SHIFT) & KEY_ID_MASK;
bool szmic = !!((hdr >> SZMIC_HDR_SHIFT) & true);
uint16_t seqZero = (hdr >> SEQ_ZERO_HDR_SHIFT) & SEQ_ZERO_MASK;
uint8_t segO = (hdr >> SEGO_HDR_SHIFT) & SEG_MASK;
uint8_t segN = (hdr >> SEGN_HDR_SHIFT) & SEG_MASK;
/* TODO: Only used for current POLLed segments to LPNs */
l_debug("SEQ: %6.6x", seq + segO);
l_debug("SEQ0: %6.6x", seq);
l_debug("segO: %d", segO);
if (!mesh_crypto_packet_build(false, ttl,
seq,
src, dst,
0,
segmented, key_id,
szmic, false, seqZero,
segO, segN,
seg, seg_len,
packet + 1, &packet_len)) {
l_error("Failed to build packet");
return;
}
if (!mesh_crypto_packet_encode(packet + 1, packet_len, key_set->enc_key,
iv_index, key_set->privacy_key)) {
l_error("Failed to encode packet");
return;
}
/* print_packet("Step 3", packet + 0, packet_len); */
if (!mesh_crypto_packet_label(packet + 1, packet_len, iv_index,
key_set->nid)) {
l_error("Failed to label packet");
return;
}
/* print_packet("Step 4", packet + 1, packet_len); */
send_msg_pkt(net, packet, packet_len + 1);
str = l_util_hexstring(packet + 1, packet_len);
l_info("TX: Friend Seg-%d %04x -> %04x : %s (%u) : TTL %d : SEQ %06x",
segO, src, dst, str, packet_len, ttl, seq);
l_free(str);
}
unsigned int mesh_net_app_send(struct mesh_net *net, bool frnd_cred,
uint16_t src, uint16_t dst,
uint8_t key_id, uint8_t ttl,
uint32_t seq, uint32_t iv_index,
bool szmic,
const void *msg, uint16_t msg_len,
mesh_net_status_func_t status_func,
void *user_data)
{
struct mesh_sar *payload = NULL;
uint8_t seg, seg_max;
unsigned int ret = 0;
bool result;
if (!net || msg_len > 384)
return 0;
if (!src)
src = net->src_addr;
if (!src || !dst)
return 0;
if (ttl == 0xff)
ttl = net->default_ttl;
seg_max = SEG_MAX(msg_len);
/* First enqueue to any Friends and internal models */
result = msg_rxed(net, false,
iv_index,
ttl,
seq + seg_max,
src, dst,
key_id,
szmic, seq & SEQ_ZERO_MASK,
msg, msg_len);
/* If successfully enqued or delivered
* to Unicast address, we are done
*/
if (result || src == dst ||
(dst >= net->src_addr && dst <= net->last_addr)) {
/* Adjust our seq_num for "virtual" delivery */
net->seq_num += seg_max;
mesh_net_next_seq_num(net);
return 0;
}
/* If Segmented, Cancel any OB segmented message to same DST */
if (seg_max) {
payload = l_queue_remove_if(net->sar_out, match_sar_remote,
L_UINT_TO_PTR(dst));
mesh_sar_free(payload);
}
/* Setup OTA Network send */
payload = mesh_sar_new(msg_len);
memcpy(payload->buf, msg, msg_len);
payload->len = msg_len;
payload->src = src;
payload->remote = dst;
payload->ttl = ttl;
payload->szmic = szmic;
payload->frnd_cred = frnd_cred;
payload->key_id = key_id;
if (seg_max) {
payload->flags = 0xffffffff >> (31 - seg_max);
payload->seqZero = seq & SEQ_ZERO_MASK;
}
payload->iv_index = mesh_net_get_iv_index(net);
payload->seqAuth = net->seq_num;
result = true;
if (!IS_UNICAST(dst) && seg_max) {
for (int i = 0; i < 4; i++) {
for (seg = 0; seg <= seg_max && result; seg++)
result = send_seg(net, payload, seg);
}
} else {
for (seg = 0; seg <= seg_max && result; seg++)
result = send_seg(net, payload, seg);
}
/* Reliable: Cache; Unreliable: Flush*/
if (result && seg_max && IS_UNICAST(dst)) {
l_queue_push_head(net->sar_out, payload);
payload->seg_timeout =
l_timeout_create(SEG_TO, outseg_to, net, NULL);
payload->msg_timeout =
l_timeout_create(MSG_TO, outmsg_to, net, NULL);
payload->status_func = status_func;
payload->user_data = user_data;
ret = payload->id = ++net->sar_id_next;
} else
mesh_sar_free(payload);
return ret;
}
void mesh_net_app_send_cancel(struct mesh_net *net, unsigned int id)
{
struct mesh_sar *sar = l_queue_remove_if(net->sar_out, match_sar_id,
L_UINT_TO_PTR(id));
if (sar) {
l_info("Canceling OB %d", id);
if (sar->status_func)
sar->status_func(sar->remote, 2,
sar->buf, sar->len - 4,
sar->user_data);
}
mesh_sar_free(sar);
}
/* TODO: add net key index */
void mesh_net_ack_send(struct mesh_net *net, struct mesh_key_set *key_set,
uint32_t iv_index,
uint8_t ttl,
uint32_t seq,
uint16_t src, uint16_t dst,
bool rly, uint16_t seqZero,
uint32_t ack_flags)
{
uint32_t hdr;
uint8_t data[7];
uint8_t pkt_len;
uint8_t pkt[30];
char *str;
hdr = NET_OP_SEG_ACKNOWLEDGE << OPCODE_HDR_SHIFT;
hdr |= rly << RELAY_HDR_SHIFT;
hdr |= (seqZero & SEQ_ZERO_MASK) << SEQ_ZERO_HDR_SHIFT;
l_put_be32(hdr, data);
l_put_be32(ack_flags, data + 3);
if (!mesh_crypto_packet_build(true, ttl,
seq,
src, dst,
NET_OP_SEG_ACKNOWLEDGE,
false, /* Not Segmented */
0, /* No Key ID associated */
false, rly, seqZero,
0, 0, /* no segO or segN */
data + 1, 6,
pkt + 1, &pkt_len)) {
return;
}
if (key_set == NULL) {
struct mesh_subnet *subnet = get_primary_subnet(net);
key_set = &subnet->tx->key_set;
}
if (!mesh_crypto_packet_encode(pkt + 1, pkt_len, key_set->enc_key,
iv_index, key_set->privacy_key)) {
l_error("Failed to encode packet");
return;
}
/* print_packet("Step 3", pkt, pkt_len); */
if (!mesh_crypto_packet_label(pkt + 1, pkt_len,
iv_index, key_set->nid)) {
l_error("Failed to label packet");
return;
}
/* print_packet("Step 4", pkt, pkt_len); */
send_msg_pkt(net, pkt, pkt_len + 1);
str = l_util_hexstring(pkt + 1, pkt_len);
l_info("TX: Friend ACK %04x -> %04x : %s (%u) : TTL %d : SEQ %06x",
src, dst, str, pkt_len,
ttl, seq);
l_free(str);
}
/* TODO: add net key index */
void mesh_net_transport_send(struct mesh_net *net, struct mesh_key_set *key_set,
bool fast, uint32_t iv_index, uint8_t ttl,
uint32_t seq, uint16_t src, uint16_t dst,
const uint8_t *msg, uint16_t msg_len)
{
uint32_t use_seq = seq;
uint8_t pkt_len;
uint8_t pkt[30];
bool result = false;
if (!net->src_addr)
return;
if (!src)
src = net->src_addr;
if (src == dst)
return;
if (ttl == 0xff)
ttl = net->default_ttl;
/* Range check the Opcode and msg length*/
if (*msg & 0xc0 || (9 + msg_len + 8 > 29))
return;
/* Enqueue for Friend if forwardable and from us */
if (!(key_set) && src >= net->src_addr && src <= net->last_addr) {
uint32_t hdr = msg[0] << OPCODE_HDR_SHIFT;
uint8_t frnd_ttl = ttl;
if (friend_packet_queue(net, iv_index,
true, frnd_ttl,
mesh_net_next_seq_num(net),
src, dst,
hdr,
msg + 1, msg_len - 1)) {
return;
}
}
/* Deliver to Local entities if applicable */
if (!(dst & 0x8000) && src >= net->src_addr && src <= net->last_addr) {
result = ctl_received(net, !!(key_set),
iv_index, ttl,
mesh_net_next_seq_num(net),
src, dst,
msg[0], 0, msg + 1, msg_len - 1);
}
if (key_set == NULL) {
struct mesh_subnet *subnet = get_primary_subnet(net);
key_set = &subnet->tx->key_set;
use_seq = mesh_net_next_seq_num(net);
if (result || (dst >= net->src_addr && dst <= net->last_addr))
return;
}
if (!mesh_crypto_packet_build(true, ttl,
use_seq,
src, dst,
msg[0],
false, 0,
false, false, 0,
0, 0,
msg + 1, msg_len - 1,
pkt + 1, &pkt_len))
return;
/* print_packet("Step 2", pkt + 1, pkt_len); */
if (!mesh_crypto_packet_encode(pkt + 1, pkt_len, key_set->enc_key,
iv_index, key_set->privacy_key)) {
l_error("Failed to encode pkt");
return;
}
/* print_packet("Step 3", pkt + 1, pkt_len); */
if (!mesh_crypto_packet_label(pkt, pkt_len, iv_index,
key_set->nid)) {
l_error("Failed to label pkt");
return;
}
/* print_packet("Step 4", pkt + 1, pkt_len); */
if (dst != 0) {
char *str;
send_msg_pkt(net, pkt, pkt_len + 1);
str = l_util_hexstring(pkt + 1, pkt_len);
l_info("TX: Network %04x -> %04x : %s (%u) : TTL %d : SEQ %06x",
src, dst, str, pkt_len,
ttl, use_seq);
l_free(str);
}
}
uint8_t mesh_net_key_refresh_phase_set(struct mesh_net *net, uint16_t idx,
uint8_t transition)
{
struct mesh_subnet *subnet;
if (!net)
return MESH_STATUS_UNSPECIFIED_ERROR;
subnet = l_queue_find(net->subnets, match_key_index,
L_UINT_TO_PTR(idx));
if (!subnet)
return MESH_STATUS_INVALID_NETKEY;
if (transition == subnet->kr_phase)
return MESH_STATUS_SUCCESS;
if ((transition != 2 && transition != 3) ||
transition < subnet->kr_phase)
return MESH_STATUS_CANNOT_SET;
switch (transition) {
case 2:
if (mesh_net_key_refresh_phase_two(net, idx)
!= MESH_STATUS_SUCCESS)
return MESH_STATUS_CANNOT_SET;
break;
case 3:
if (mesh_net_key_refresh_finish(net, idx)
!= MESH_STATUS_SUCCESS)
return MESH_STATUS_CANNOT_SET;
break;
default:
return MESH_STATUS_CANNOT_SET;
}
return MESH_STATUS_SUCCESS;
}
uint8_t mesh_net_key_refresh_phase_get(struct mesh_net *net, uint16_t idx,
uint8_t *phase)
{
struct mesh_subnet *subnet;
if (!net)
return MESH_STATUS_UNSPECIFIED_ERROR;
subnet = l_queue_find(net->subnets, match_key_index,
L_UINT_TO_PTR(idx));
if (!subnet)
return MESH_STATUS_INVALID_NETKEY;
*phase = subnet->kr_phase;
return MESH_STATUS_SUCCESS;
}
int mesh_net_kr_phase_one(struct mesh_net *net, uint16_t idx,
const uint8_t *value)
{
struct mesh_subnet *subnet;
if (!net)
return MESH_STATUS_UNSPECIFIED_ERROR;
subnet = l_queue_find(net->subnets, match_key_index,
L_UINT_TO_PTR(idx));
if (!subnet)
return MESH_STATUS_CANNOT_UPDATE;
if (subnet->updated.key_set.nid != NET_NID_INVALID)
l_info("Warning: overwriting new keys");
/* Preserve starting data */
subnet->updated = subnet->current;
/* Generate new keys */
if (!create_keys(net, &subnet->updated, value)) {
subnet->updated.key_set.nid = NET_NID_INVALID;
l_error("Failed to start key refresh phase one");
return MESH_STATUS_CANNOT_UPDATE;
}
/* If we are an LPN, generate our keys here */
if (net->friend_addr)
frnd_key_refresh(net, 1);
else
/* If we are a Friend-Node, generate all our new keys */
l_queue_foreach(net->friends, frnd_kr_phase1, (void *)value);
l_info("key refresh phase 1: NID 0x%2x", subnet->updated.key_set.nid);
mesh_net_add_keyset(net, &subnet->updated.key_set);
subnet->kr_phase = KEY_REFRESH_PHASE_ONE;
return MESH_STATUS_SUCCESS;
}
int mesh_net_key_refresh_phase_two(struct mesh_net *net, uint16_t idx)
{
struct mesh_subnet *subnet;
if (!net)
return MESH_STATUS_UNSPECIFIED_ERROR;
subnet = l_queue_find(net->subnets, match_key_index,
L_UINT_TO_PTR(idx));
if (!subnet || subnet->updated.key_set.nid == NET_NID_INVALID)
return MESH_STATUS_INVALID_NETKEY;
l_info("Key refresh procedure phase 2: start using new net TX keys");
subnet->key_refresh = 1;
subnet->tx = &subnet->updated;
/* TODO: Provisioner may need to stay in phase three until
* it hears beacons from all the nodes
*/
subnet->kr_phase = KEY_REFRESH_PHASE_TWO;
set_network_beacon(subnet, net);
if (net->friend_addr)
frnd_key_refresh(net, 2);
else
l_queue_foreach(net->friends, frnd_kr_phase2, net);
return MESH_STATUS_SUCCESS;
}
int mesh_net_key_refresh_finish(struct mesh_net *net, uint16_t idx)
{
struct mesh_subnet *subnet;
if (!net)
return MESH_STATUS_UNSPECIFIED_ERROR;
subnet = l_queue_find(net->subnets, match_key_index,
L_UINT_TO_PTR(idx));
if (!subnet || subnet->updated.key_set.nid == NET_NID_INVALID)
return MESH_STATUS_INVALID_NETKEY;
if (subnet->kr_phase == KEY_REFRESH_PHASE_NONE)
return MESH_STATUS_SUCCESS;
l_info("Key refresh phase 3: use new keys only, discard old ones");
/* Switch to using new keys, discard old ones */
subnet->current = subnet->updated;
subnet->tx = &subnet->current;
subnet->updated.key_set.nid = NET_NID_INVALID;
mesh_net_remove_keyset(net, &subnet->updated.key_set);
subnet->key_refresh = 0;
subnet->kr_phase = KEY_REFRESH_PHASE_NONE;
set_network_beacon(subnet, net);
if (net->friend_addr)
frnd_key_refresh(net, 3);
else
l_queue_foreach(net->friends, frnd_kr_phase3, net);
return MESH_STATUS_SUCCESS;
}
uint16_t mesh_net_get_features(struct mesh_net *net)
{
uint16_t features = 0;
if (net->relay.enable)
features |= FEATURE_RELAY;
if (net->proxy_enable)
features |= FEATURE_PROXY;
if (!l_queue_isempty(net->friends))
features |= FEATURE_FRIEND;
if (net->friend_addr != UNASSIGNED_ADDRESS)
features |= FEATURE_LPN;
return features;
}
struct mesh_net_heartbeat *mesh_net_heartbeat_get(struct mesh_net *net)
{
return &net->heartbeat;
}
void mesh_net_heartbeat_send(struct mesh_net *net)
{
struct mesh_net_heartbeat *hb = &net->heartbeat;
uint8_t msg[4];
int n = 0;
if (hb->pub_dst == UNASSIGNED_ADDRESS)
return;
msg[n++] = NET_OP_HEARTBEAT;
msg[n++] = hb->pub_ttl;
l_put_be16(hb->features, msg + n);
n += 2;
mesh_net_transport_send(net, NULL, false, mesh_net_get_iv_index(net),
hb->pub_ttl, 0, 0, hb->pub_dst, msg, n);
}
void mesh_net_heartbeat_init(struct mesh_net *net)
{
struct mesh_net_heartbeat *hb = &net->heartbeat;
memset(hb, 0, sizeof(struct mesh_net_heartbeat));
hb->sub_min_hops = 0xff;
hb->features = mesh_net_get_features(net);
}
void mesh_net_uni_range_set(struct mesh_net *net,
struct mesh_net_addr_range *range)
{
net->prov_uni_addr.low = range->low;
net->prov_uni_addr.high = range->high;
net->prov_uni_addr.next = range->next;
}
struct mesh_net_addr_range mesh_net_uni_range_get(struct mesh_net *net)
{
return net->prov_uni_addr;
}
void mesh_net_set_iv_index(struct mesh_net *net, uint32_t index, bool update)
{
net->iv_index = index;
net->iv_update = update;
}
void mesh_net_provisioner_mode_set(struct mesh_net *net, bool mode)
{
net->provisioner = mode;
}
bool mesh_net_provisioner_mode_get(struct mesh_net *net)
{
return net->provisioner;
}
uint16_t mesh_net_get_primary_idx(struct mesh_net *net)
{
struct mesh_subnet *subnet;
if (!net)
return NET_IDX_INVALID;
subnet = get_primary_subnet(net);
if (!subnet)
return NET_IDX_INVALID;
return subnet->idx;
}
uint32_t mesh_net_friend_timeout(struct mesh_net *net, uint16_t addr)
{
struct mesh_friend *frnd = l_queue_find(net->friends, match_by_friend,
L_UINT_TO_PTR(addr));
if (!frnd)
return 0;
else
return frnd->poll_timeout;
}
bool mesh_net_local_node_set(struct mesh_net *net, struct mesh_node *node,
bool provisioner)
{
if (net->local_node) {
l_info("Local node already registered");
return false;
}
net->local_node = node;
net->provisioner = provisioner;
return true;
}
struct mesh_node *mesh_net_local_node_get(struct mesh_net *net)
{
return net->local_node;
}
bool mesh_net_set_crpl(struct mesh_net *net, uint16_t crpl)
{
if (!net)
return false;
net->crpl = crpl;
return true;
}
uint16_t mesh_net_get_crpl(struct mesh_net *net)
{
if (!net)
return 0;
return net->crpl;
}
struct l_queue *mesh_net_get_app_keys(struct mesh_net *net)
{
if (!net)
return NULL;
if (!net->app_keys)
net->app_keys = l_queue_new();
return net->app_keys;
}
bool mesh_net_have_key(struct mesh_net *net, uint16_t idx)
{
if (!net)
return false;
return (l_queue_find(net->subnets, match_key_index,
L_UINT_TO_PTR(idx)) != NULL);
}
bool mesh_net_jconfig_set(struct mesh_net *net, void *jconfig)
{
if (!net)
return false;
net->jconfig_local = jconfig;
return true;
}
void *mesh_net_jconfig_get(struct mesh_net *net)
{
if (!net)
return NULL;
return net->jconfig_local;
}
bool mesh_net_cfg_file_set(struct mesh_net *net, const char *cfg)
{
if (!net)
return false;
net->cfg_file = cfg;
return true;
}
bool mesh_net_cfg_file_get(struct mesh_net *net, const char **cfg)
{
if (!net)
return false;
*cfg = net->cfg_file;
return true;
}
bool mesh_net_is_local_address(struct mesh_net *net, uint16_t addr)
{
if (!net)
return false;
return (addr >= net->src_addr && addr <= net->last_addr);
}
void mesh_net_set_window_accuracy(struct mesh_net *net, uint8_t accuracy)
{
if (!net)
return;
net->window_accuracy = accuracy;
}
void mesh_net_transmit_params_set(struct mesh_net *net, uint8_t count,
uint16_t interval)
{
if (!net)
return;
net->tx_interval = interval;
net->tx_cnt = count;
}
void mesh_net_transmit_params_get(struct mesh_net *net, uint8_t *count,
uint16_t *interval)
{
if (!net)
return;
*interval = net->tx_interval;
*count = net->tx_cnt;
}
struct mesh_io *mesh_net_get_io(struct mesh_net *net)
{
if (!net)
return NULL;
return net->io;
}
struct mesh_prov *mesh_net_get_prov(struct mesh_net *net)
{
if (!net)
return NULL;
return net->prov;
}
void mesh_net_set_prov(struct mesh_net *net, struct mesh_prov *prov)
{
if (!net)
return;
net->prov = prov;
}
bool mesh_net_provisioned_new(struct mesh_net *net, uint8_t device_key[16],
uint16_t net_idx, uint8_t net_key[16],
uint16_t unicast, uint16_t snb_flags,
uint32_t iv_index, mesh_status_func_t cb,
void *user_data)
{
if (net->provisioned || !net->local_node)
return false;
if (!node_set_primary(net->local_node, unicast) ||
!(mesh_net_register_unicast(net, unicast,
mesh_net_get_num_ele(net))))
return false;
if (!node_set_device_key(net->local_node, device_key))
return false;
net->iv_index = iv_index;
net->iv_update = ((snb_flags & 0x02) != 0);
if (!storage_local_set_iv_index(net, iv_index, net->iv_update))
return false;
if (mesh_net_add_key(net, false, net_idx, net_key) !=
MESH_STATUS_SUCCESS)
return false;
if ((snb_flags & 0x01) &&
(mesh_net_add_key(net, true, net_idx, net_key) !=
MESH_STATUS_SUCCESS)) {
l_queue_clear(net->subnets, l_free);
return false;
}
return storage_save_new_config(net, net->cfg_file, cb, user_data);
}
void mesh_net_provisioned_set(struct mesh_net *net, bool provisioned)
{
if (!net)
return;
net->provisioned = provisioned;
}
bool mesh_net_provisioned_get(struct mesh_net *net)
{
if (!net)
return false;
return net->provisioned;
}