bluez/sbc/sbc.c
2008-01-19 15:56:52 +00:00

1425 lines
36 KiB
C

/*
*
* Bluetooth low-complexity, subband codec (SBC) library
*
* Copyright (C) 2004-2007 Marcel Holtmann <marcel@holtmann.org>
* Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch>
* Copyright (C) 2005-2008 Brad Midgley <bmidgley@xmission.com>
*
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* todo items:
use a log2 table for byte integer scale factors calculation (sum log2 results
for high and low bytes) fill bitpool by 16 bits instead of one at a time in
bits allocation/bitpool generation port to the dsp
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <malloc.h>
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#include "sbc_math.h"
#include "sbc_tables.h"
#include "sbc.h"
#define SBC_SYNCWORD 0x9C
/* sampling frequency */
#define SBC_FS_16 0x00
#define SBC_FS_32 0x01
#define SBC_FS_44 0x02
#define SBC_FS_48 0x03
/* nrof_blocks */
#define SBC_NB_4 0x00
#define SBC_NB_8 0x01
#define SBC_NB_12 0x02
#define SBC_NB_16 0x03
/* channel mode */
#define SBC_CM_MONO 0x00
#define SBC_CM_DUAL_CHANNEL 0x01
#define SBC_CM_STEREO 0x02
#define SBC_CM_JOINT_STEREO 0x03
/* allocation mode */
#define SBC_AM_LOUDNESS 0x00
#define SBC_AM_SNR 0x01
/* subbands */
#define SBC_SB_4 0x00
#define SBC_SB_8 0x01
/* This structure contains an unpacked SBC frame.
Yes, there is probably quite some unused space herein */
struct sbc_frame {
uint16_t sampling_frequency; /* in kHz */
uint8_t blocks;
enum {
MONO = SBC_CM_MONO,
DUAL_CHANNEL = SBC_CM_DUAL_CHANNEL,
STEREO = SBC_CM_STEREO,
JOINT_STEREO = SBC_CM_JOINT_STEREO
} channel_mode;
uint8_t channels;
enum {
LOUDNESS = SBC_AM_LOUDNESS,
SNR = SBC_AM_SNR
} allocation_method;
uint8_t subbands;
uint8_t bitpool;
uint8_t codesize;
uint8_t length;
/* bit number x set means joint stereo has been used in subband x */
uint8_t join;
/* only the lower 4 bits of every element are to be used */
uint8_t scale_factor[2][8];
/* raw integer subband samples in the frame */
uint16_t audio_sample[16][2][8];
int32_t sb_sample_f[16][2][8];
int32_t sb_sample[16][2][8]; /* modified subband samples */
int16_t pcm_sample[2][16*8]; /* original pcm audio samples */
};
struct sbc_decoder_state {
int subbands;
int32_t V[2][170];
int offset[2][16];
};
struct sbc_encoder_state {
int subbands;
int position[2];
int32_t X[2][160];
};
/*
* Calculates the CRC-8 of the first len bits in data
*/
static const uint8_t crc_table[256] = {
0x00, 0x1D, 0x3A, 0x27, 0x74, 0x69, 0x4E, 0x53,
0xE8, 0xF5, 0xD2, 0xCF, 0x9C, 0x81, 0xA6, 0xBB,
0xCD, 0xD0, 0xF7, 0xEA, 0xB9, 0xA4, 0x83, 0x9E,
0x25, 0x38, 0x1F, 0x02, 0x51, 0x4C, 0x6B, 0x76,
0x87, 0x9A, 0xBD, 0xA0, 0xF3, 0xEE, 0xC9, 0xD4,
0x6F, 0x72, 0x55, 0x48, 0x1B, 0x06, 0x21, 0x3C,
0x4A, 0x57, 0x70, 0x6D, 0x3E, 0x23, 0x04, 0x19,
0xA2, 0xBF, 0x98, 0x85, 0xD6, 0xCB, 0xEC, 0xF1,
0x13, 0x0E, 0x29, 0x34, 0x67, 0x7A, 0x5D, 0x40,
0xFB, 0xE6, 0xC1, 0xDC, 0x8F, 0x92, 0xB5, 0xA8,
0xDE, 0xC3, 0xE4, 0xF9, 0xAA, 0xB7, 0x90, 0x8D,
0x36, 0x2B, 0x0C, 0x11, 0x42, 0x5F, 0x78, 0x65,
0x94, 0x89, 0xAE, 0xB3, 0xE0, 0xFD, 0xDA, 0xC7,
0x7C, 0x61, 0x46, 0x5B, 0x08, 0x15, 0x32, 0x2F,
0x59, 0x44, 0x63, 0x7E, 0x2D, 0x30, 0x17, 0x0A,
0xB1, 0xAC, 0x8B, 0x96, 0xC5, 0xD8, 0xFF, 0xE2,
0x26, 0x3B, 0x1C, 0x01, 0x52, 0x4F, 0x68, 0x75,
0xCE, 0xD3, 0xF4, 0xE9, 0xBA, 0xA7, 0x80, 0x9D,
0xEB, 0xF6, 0xD1, 0xCC, 0x9F, 0x82, 0xA5, 0xB8,
0x03, 0x1E, 0x39, 0x24, 0x77, 0x6A, 0x4D, 0x50,
0xA1, 0xBC, 0x9B, 0x86, 0xD5, 0xC8, 0xEF, 0xF2,
0x49, 0x54, 0x73, 0x6E, 0x3D, 0x20, 0x07, 0x1A,
0x6C, 0x71, 0x56, 0x4B, 0x18, 0x05, 0x22, 0x3F,
0x84, 0x99, 0xBE, 0xA3, 0xF0, 0xED, 0xCA, 0xD7,
0x35, 0x28, 0x0F, 0x12, 0x41, 0x5C, 0x7B, 0x66,
0xDD, 0xC0, 0xE7, 0xFA, 0xA9, 0xB4, 0x93, 0x8E,
0xF8, 0xE5, 0xC2, 0xDF, 0x8C, 0x91, 0xB6, 0xAB,
0x10, 0x0D, 0x2A, 0x37, 0x64, 0x79, 0x5E, 0x43,
0xB2, 0xAF, 0x88, 0x95, 0xC6, 0xDB, 0xFC, 0xE1,
0x5A, 0x47, 0x60, 0x7D, 0x2E, 0x33, 0x14, 0x09,
0x7F, 0x62, 0x45, 0x58, 0x0B, 0x16, 0x31, 0x2C,
0x97, 0x8A, 0xAD, 0xB0, 0xE3, 0xFE, 0xD9, 0xC4
};
static uint8_t sbc_crc8(const uint8_t *data, size_t len)
{
uint8_t crc = 0x0f;
size_t i;
uint8_t octet;
for (i = 0; i < len / 8; i++)
crc = crc_table[crc ^ data[i]];
octet = data[i];
for (i = 0; i < len % 8; i++) {
char bit = ((octet ^ crc) & 0x80) >> 7;
crc = ((crc & 0x7f) << 1) ^ (bit ? 0x1d : 0);
octet = octet << 1;
}
return crc;
}
/*
* Code straight from the spec to calculate the bits array
* Takes a pointer to the frame in question, a pointer to the bits array and
* the sampling frequency (as 2 bit integer)
*/
static void sbc_calculate_bits(const struct sbc_frame *frame, int (*bits)[8], uint8_t sf)
{
if (frame->channel_mode == MONO || frame->channel_mode == DUAL_CHANNEL) {
int bitneed[2][8], loudness, max_bitneed, bitcount, slicecount, bitslice;
int ch, sb;
for (ch = 0; ch < frame->channels; ch++) {
max_bitneed = 0;
if (frame->allocation_method == SNR) {
for (sb = 0; sb < frame->subbands; sb++) {
bitneed[ch][sb] = frame->scale_factor[ch][sb];
if (bitneed[ch][sb] > max_bitneed)
max_bitneed = bitneed[ch][sb];
}
} else {
for (sb = 0; sb < frame->subbands; sb++) {
if (frame->scale_factor[ch][sb] == 0)
bitneed[ch][sb] = -5;
else {
if (frame->subbands == 4)
loudness = frame->scale_factor[ch][sb] - sbc_offset4[sf][sb];
else
loudness = frame->scale_factor[ch][sb] - sbc_offset8[sf][sb];
if (loudness > 0)
bitneed[ch][sb] = loudness / 2;
else
bitneed[ch][sb] = loudness;
}
if (bitneed[ch][sb] > max_bitneed)
max_bitneed = bitneed[ch][sb];
}
}
bitcount = 0;
slicecount = 0;
bitslice = max_bitneed + 1;
do {
bitslice--;
bitcount += slicecount;
slicecount = 0;
for (sb = 0; sb < frame->subbands; sb++) {
if ((bitneed[ch][sb] > bitslice + 1) && (bitneed[ch][sb] < bitslice + 16))
slicecount++;
else if (bitneed[ch][sb] == bitslice + 1)
slicecount += 2;
}
} while (bitcount + slicecount < frame->bitpool);
if (bitcount + slicecount == frame->bitpool) {
bitcount += slicecount;
bitslice--;
}
for (sb = 0; sb < frame->subbands; sb++) {
if (bitneed[ch][sb] < bitslice + 2)
bits[ch][sb] = 0;
else {
bits[ch][sb] = bitneed[ch][sb] - bitslice;
if (bits[ch][sb] > 16)
bits[ch][sb] = 16;
}
}
for (sb = 0; bitcount < frame->bitpool && sb < frame->subbands; sb++) {
if ((bits[ch][sb] >= 2) && (bits[ch][sb] < 16)) {
bits[ch][sb]++;
bitcount++;
} else if ((bitneed[ch][sb] == bitslice + 1) && (frame->bitpool > bitcount + 1)) {
bits[ch][sb] = 2;
bitcount += 2;
}
}
for (sb = 0; bitcount < frame->bitpool && sb < frame->subbands; sb++) {
if (bits[ch][sb] < 16) {
bits[ch][sb]++;
bitcount++;
}
}
}
} else if (frame->channel_mode == STEREO || frame->channel_mode == JOINT_STEREO) {
int bitneed[2][8], loudness, max_bitneed, bitcount, slicecount, bitslice;
int ch, sb;
max_bitneed = 0;
if (frame->allocation_method == SNR) {
for (ch = 0; ch < 2; ch++) {
for (sb = 0; sb < frame->subbands; sb++) {
bitneed[ch][sb] = frame->scale_factor[ch][sb];
if (bitneed[ch][sb] > max_bitneed)
max_bitneed = bitneed[ch][sb];
}
}
} else {
for (ch = 0; ch < 2; ch++) {
for (sb = 0; sb < frame->subbands; sb++) {
if (frame->scale_factor[ch][sb] == 0)
bitneed[ch][sb] = -5;
else {
if (frame->subbands == 4)
loudness = frame->scale_factor[ch][sb] - sbc_offset4[sf][sb];
else
loudness = frame->scale_factor[ch][sb] - sbc_offset8[sf][sb];
if (loudness > 0)
bitneed[ch][sb] = loudness / 2;
else
bitneed[ch][sb] = loudness;
}
if (bitneed[ch][sb] > max_bitneed)
max_bitneed = bitneed[ch][sb];
}
}
}
bitcount = 0;
slicecount = 0;
bitslice = max_bitneed + 1;
do {
bitslice--;
bitcount += slicecount;
slicecount = 0;
for (ch = 0; ch < 2; ch++) {
for (sb = 0; sb < frame->subbands; sb++) {
if ((bitneed[ch][sb] > bitslice + 1) && (bitneed[ch][sb] < bitslice + 16))
slicecount++;
else if (bitneed[ch][sb] == bitslice + 1)
slicecount += 2;
}
}
} while (bitcount + slicecount < frame->bitpool);
if (bitcount + slicecount == frame->bitpool) {
bitcount += slicecount;
bitslice--;
}
for (ch = 0; ch < 2; ch++) {
for (sb = 0; sb < frame->subbands; sb++) {
if (bitneed[ch][sb] < bitslice + 2) {
bits[ch][sb] = 0;
} else {
bits[ch][sb] = bitneed[ch][sb] - bitslice;
if (bits[ch][sb] > 16)
bits[ch][sb] = 16;
}
}
}
ch = 0;
sb = 0;
while (bitcount < frame->bitpool) {
if ((bits[ch][sb] >= 2) && (bits[ch][sb] < 16)) {
bits[ch][sb]++;
bitcount++;
} else if ((bitneed[ch][sb] == bitslice + 1) && (frame->bitpool > bitcount + 1)) {
bits[ch][sb] = 2;
bitcount += 2;
}
if (ch == 1) {
ch = 0;
sb++;
if (sb >= frame->subbands) break;
} else
ch = 1;
}
ch = 0;
sb = 0;
while (bitcount < frame->bitpool) {
if (bits[ch][sb] < 16) {
bits[ch][sb]++;
bitcount++;
}
if (ch == 1) {
ch = 0;
sb++;
if (sb >= frame->subbands) break;
} else
ch = 1;
}
}
}
/*
* Unpacks a SBC frame at the beginning of the stream in data,
* which has at most len bytes into frame.
* Returns the length in bytes of the packed frame, or a negative
* value on error. The error codes are:
*
* -1 Data stream too short
* -2 Sync byte incorrect
* -3 CRC8 incorrect
* -4 Bitpool value out of bounds
*/
static int sbc_unpack_frame(const uint8_t *data, struct sbc_frame *frame,
size_t len)
{
int consumed;
/* Will copy the parts of the header that are relevant to crc
* calculation here */
uint8_t crc_header[11] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
int crc_pos = 0;
int32_t temp;
uint8_t sf; /* sampling_frequency, temporarily needed as
array index */
int ch, sb, blk, bit; /* channel, subband, block and bit standard
counters */
int bits[2][8]; /* bits distribution */
int levels[2][8]; /* levels derived from that */
if (len < 4)
return -1;
if (data[0] != SBC_SYNCWORD)
return -2;
sf = (data[1] >> 6) & 0x03;
switch (sf) {
case SBC_FS_16:
frame->sampling_frequency = 16000;
break;
case SBC_FS_32:
frame->sampling_frequency = 32000;
break;
case SBC_FS_44:
frame->sampling_frequency = 44100;
break;
case SBC_FS_48:
frame->sampling_frequency = 48000;
break;
}
switch ((data[1] >> 4) & 0x03) {
case SBC_NB_4:
frame->blocks = 4;
break;
case SBC_NB_8:
frame->blocks = 8;
break;
case SBC_NB_12:
frame->blocks = 12;
break;
case SBC_NB_16:
frame->blocks = 16;
break;
}
frame->channel_mode = (data[1] >> 2) & 0x03;
switch (frame->channel_mode) {
case MONO:
frame->channels = 1;
break;
case DUAL_CHANNEL: /* fall-through */
case STEREO:
case JOINT_STEREO:
frame->channels = 2;
break;
}
frame->allocation_method = (data[1] >> 1) & 0x01;
frame->subbands = (data[1] & 0x01) ? 8 : 4;
frame->bitpool = data[2];
if ((frame->channel_mode == MONO || frame->channel_mode == DUAL_CHANNEL) &&
frame->bitpool > 16 * frame->subbands)
return -4;
if ((frame->channel_mode == STEREO || frame->channel_mode == JOINT_STEREO) &&
frame->bitpool > 32 * frame->subbands)
return -4;
/* data[3] is crc, we're checking it later */
consumed = 32;
crc_header[0] = data[1];
crc_header[1] = data[2];
crc_pos = 16;
if (frame->channel_mode == JOINT_STEREO) {
if (len * 8 < consumed + frame->subbands)
return -1;
frame->join = 0x00;
for (sb = 0; sb < frame->subbands - 1; sb++)
frame->join |= ((data[4] >> (7 - sb)) & 0x01) << sb;
if (frame->subbands == 4)
crc_header[crc_pos / 8] = data[4] & 0xf0;
else
crc_header[crc_pos / 8] = data[4];
consumed += frame->subbands;
crc_pos += frame->subbands;
}
if (len * 8 < consumed + (4 * frame->subbands * frame->channels))
return -1;
for (ch = 0; ch < frame->channels; ch++) {
for (sb = 0; sb < frame->subbands; sb++) {
/* FIXME assert(consumed % 4 == 0); */
frame->scale_factor[ch][sb] =
(data[consumed >> 3] >> (4 - (consumed & 0x7))) & 0x0F;
crc_header[crc_pos >> 3] |=
frame->scale_factor[ch][sb] << (4 - (crc_pos & 0x7));
consumed += 4;
crc_pos += 4;
}
}
if (data[3] != sbc_crc8(crc_header, crc_pos))
return -3;
sbc_calculate_bits(frame, bits, sf);
for (blk = 0; blk < frame->blocks; blk++) {
for (ch = 0; ch < frame->channels; ch++) {
for (sb = 0; sb < frame->subbands; sb++) {
frame->audio_sample[blk][ch][sb] = 0;
if (bits[ch][sb] == 0)
continue;
for (bit = 0; bit < bits[ch][sb]; bit++) {
int b; /* A bit */
if (consumed > len * 8)
return -1;
b = (data[consumed >> 3] >> (7 - (consumed & 0x7))) & 0x01;
frame->audio_sample[blk][ch][sb] |=
b << (bits[ch][sb] - bit - 1);
consumed++;
}
}
}
}
for (ch = 0; ch < frame->channels; ch++) {
for (sb = 0; sb < frame->subbands; sb++)
levels[ch][sb] = (1 << bits[ch][sb]) - 1;
}
for (blk = 0; blk < frame->blocks; blk++) {
for (ch = 0; ch < frame->channels; ch++) {
for (sb = 0; sb < frame->subbands; sb++) {
if (levels[ch][sb] > 0) {
frame->sb_sample[blk][ch][sb] =
(((frame->audio_sample[blk][ch][sb] << 16) | 0x8000) /
levels[ch][sb]) - 0x8000;
frame->sb_sample[blk][ch][sb] >>= 3;
/* Q13 */
frame->sb_sample[blk][ch][sb] =
(frame->sb_sample[blk][ch][sb] <<
(frame->scale_factor[ch][sb] + 1));
} else
frame->sb_sample[blk][ch][sb] = 0;
}
}
}
if (frame->channel_mode == JOINT_STEREO) {
for (blk = 0; blk < frame->blocks; blk++) {
for (sb = 0; sb < frame->subbands; sb++) {
if (frame->join & (0x01 << sb)) {
temp = frame->sb_sample[blk][0][sb] +
frame->sb_sample[blk][1][sb];
frame->sb_sample[blk][1][sb] =
frame->sb_sample[blk][0][sb] -
frame->sb_sample[blk][1][sb];
frame->sb_sample[blk][0][sb] = temp;
}
}
}
}
if ((consumed & 0x7) != 0)
consumed += 8 - (consumed & 0x7);
return consumed >> 3;
}
static void sbc_decoder_init(struct sbc_decoder_state *state,
const struct sbc_frame *frame)
{
int i, ch;
memset(state->V, 0, sizeof(state->V));
state->subbands = frame->subbands;
for (ch = 0; ch < 2; ch++)
for (i = 0; i < frame->subbands * 2; i++)
state->offset[ch][i] = (10 * i + 10);
}
static inline void sbc_synthesize_four(struct sbc_decoder_state *state,
struct sbc_frame *frame, int ch, int blk)
{
int i, j, k, idx;
sbc_extended_t res;
for (i = 0; i < 8; i++) {
/* Shifting */
state->offset[ch][i]--;
if (state->offset[ch][i] < 0) {
state->offset[ch][i] = 79;
for (j = 0; j < 9; j++)
state->V[ch][j+80] = state->V[ch][j];
}
}
for (i = 0; i < 8; i++) {
/* Distribute the new matrix value to the shifted position */
SBC_FIXED_0(res);
for (j = 0; j < 4; j++)
MULA(res, synmatrix4[i][j], frame->sb_sample[blk][ch][j]);
state->V[ch][state->offset[ch][i]] = SCALE4_STAGED1(res);
}
/* Compute the samples */
for (idx = 0, i = 0; i < 4; i++) {
k = (i + 4) & 0xf;
SBC_FIXED_0(res);
for (j = 0; j < 10; idx++) {
MULA(res, state->V[ch][state->offset[ch][i]+j++],
sbc_proto_4_40m0[idx]);
MULA(res, state->V[ch][state->offset[ch][k]+j++],
sbc_proto_4_40m1[idx]);
}
/* Store in output, Q0 */
frame->pcm_sample[ch][blk * 4 + i] = SCALE4_STAGED2(res);
}
}
static inline void sbc_synthesize_eight(struct sbc_decoder_state *state,
struct sbc_frame *frame, int ch, int blk)
{
int i, j, k, idx;
sbc_extended_t res;
for (i = 0; i < 16; i++) {
/* Shifting */
state->offset[ch][i]--;
if (state->offset[ch][i] < 0) {
state->offset[ch][i] = 159;
for (j = 0; j < 9; j++)
state->V[ch][j+160] = state->V[ch][j];
}
}
for (i = 0; i < 16; i++) {
/* Distribute the new matrix value to the shifted position */
SBC_FIXED_0(res);
for (j = 0; j < 8; j++) {
/* Q28 = Q15 * Q13 */
MULA(res, synmatrix8[i][j], frame->sb_sample[blk][ch][j]);
}
/* Q10 */
state->V[ch][state->offset[ch][i]] = SCALE8_STAGED1(res);
}
/* Compute the samples */
for (idx = 0, i = 0; i < 8; i++) {
k = (i + 8) & 0xf;
SBC_FIXED_0(res);
for (j = 0; j < 10; idx++) {
MULA(res, state->V[ch][state->offset[ch][i]+j++], sbc_proto_8_80m0[idx]);
MULA(res, state->V[ch][state->offset[ch][k]+j++], sbc_proto_8_80m1[idx]);
}
/* Store in output */
frame->pcm_sample[ch][blk * 8 + i] = SCALE8_STAGED2(res); // Q0
}
}
static int sbc_synthesize_audio(struct sbc_decoder_state *state,
struct sbc_frame *frame)
{
int ch, blk;
switch (frame->subbands) {
case 4:
for (ch = 0; ch < frame->channels; ch++) {
for (blk = 0; blk < frame->blocks; blk++)
sbc_synthesize_four(state, frame, ch, blk);
}
return frame->blocks * 4;
case 8:
for (ch = 0; ch < frame->channels; ch++) {
for (blk = 0; blk < frame->blocks; blk++)
sbc_synthesize_eight(state, frame, ch, blk);
}
return frame->blocks * 8;
default:
return -EIO;
}
}
static void sbc_encoder_init(struct sbc_encoder_state *state,
const struct sbc_frame *frame)
{
memset(&state->X, 0, sizeof(state->X));
state->subbands = frame->subbands;
state->position[0] = state->position[1] = 9 * frame->subbands;
}
static inline void _sbc_analyze_four(const int32_t *in, int32_t *out)
{
sbc_extended_t res;
sbc_extended_t t[8];
sbc_extended_t s[5];
MUL(res, _sbc_proto_4[0], (in[8] - in[32])); /* Q18 */
MULA(res, _sbc_proto_4[1], (in[16] - in[24]));
t[0] = SCALE4_STAGE1(res); /* Q8 */
MUL(res, _sbc_proto_4[2], in[1]);
MULA(res, _sbc_proto_4[3], in[9]);
MULA(res, _sbc_proto_4[4], in[17]);
MULA(res, _sbc_proto_4[5], in[25]);
MULA(res, _sbc_proto_4[6], in[33]);
t[1] = SCALE4_STAGE1(res);
MUL(res, _sbc_proto_4[7], in[2]);
MULA(res, _sbc_proto_4[8], in[10]);
MULA(res, _sbc_proto_4[9], in[18]);
MULA(res, _sbc_proto_4[10], in[26]);
MULA(res, _sbc_proto_4[11], in[34]);
t[2] = SCALE4_STAGE1(res);
MUL(res, _sbc_proto_4[12], in[3]);
MULA(res, _sbc_proto_4[13], in[11]);
MULA(res, _sbc_proto_4[14], in[19]);
MULA(res, _sbc_proto_4[15], in[27]);
MULA(res, _sbc_proto_4[16], in[35]);
t[3] = SCALE4_STAGE1(res);
MUL(res, _sbc_proto_4[17], in[4] + in[36]);
MULA(res, _sbc_proto_4[18], in[12] + in[28]);
MULA(res, _sbc_proto_4[19], in[20]);
t[4] = SCALE4_STAGE1(res);
MUL(res, _sbc_proto_4[16], in[5]);
MULA(res, _sbc_proto_4[15], in[13]);
MULA(res, _sbc_proto_4[14], in[21]);
MULA(res, _sbc_proto_4[13], in[29]);
MULA(res, _sbc_proto_4[12], in[37]);
t[5] = SCALE4_STAGE1(res);
/* don't compute t[6]... this term always multiplies
* with cos(pi/2) = 0 */
MUL(res, _sbc_proto_4[6], in[7]);
MULA(res, _sbc_proto_4[5], in[15]);
MULA(res, _sbc_proto_4[4], in[23]);
MULA(res, _sbc_proto_4[3], in[31]);
MULA(res, _sbc_proto_4[2], in[39]);
t[7] = SCALE4_STAGE1(res);
MUL(s[0], _anamatrix4[0], t[0] + t[4]);
MUL(s[1], _anamatrix4[2], t[2]);
MUL(s[2], _anamatrix4[1], t[1] + t[3]);
MULA(s[2], _anamatrix4[3], t[5]);
MUL(s[3], _anamatrix4[3], t[1] + t[3]);
MULA(s[3], _anamatrix4[1], - t[5] + t[7]);
MUL(s[4], _anamatrix4[3], t[7]);
out[0] = SCALE4_STAGE2( s[0] + s[1] + s[2] + s[4]); /* Q0 */
out[1] = SCALE4_STAGE2(-s[0] + s[1] + s[3]);
out[2] = SCALE4_STAGE2(-s[0] + s[1] - s[3]);
out[3] = SCALE4_STAGE2( s[0] + s[1] - s[2] - s[4]);
}
static inline void sbc_analyze_four(struct sbc_encoder_state *state,
struct sbc_frame *frame, int ch, int blk)
{
int32_t *x = &state->X[ch][state->position[ch]];
int16_t *pcm = &frame->pcm_sample[ch][blk * 4];
/* Input 4 Audio Samples */
x[40] = x[0] = pcm[3];
x[41] = x[1] = pcm[2];
x[42] = x[2] = pcm[1];
x[43] = x[3] = pcm[0];
_sbc_analyze_four(x, frame->sb_sample_f[blk][ch]);
state->position[ch] -= 4;
if (state->position[ch] < 0)
state->position[ch] = 36;
}
static inline void _sbc_analyze_eight(const int32_t *in, int32_t *out)
{
sbc_extended_t res;
sbc_extended_t t[8];
sbc_extended_t s[8];
MUL(res, _sbc_proto_8[0], (in[16] - in[64])); /* Q18 = Q18 * Q0 */
MULA(res, _sbc_proto_8[1], (in[32] - in[48]));
MULA(res, _sbc_proto_8[2], in[4]);
MULA(res, _sbc_proto_8[3], in[20]);
MULA(res, _sbc_proto_8[4], in[36]);
MULA(res, _sbc_proto_8[5], in[52]);
t[0] = SCALE8_STAGE1(res); /* Q10 */
MUL(res, _sbc_proto_8[6], in[2]);
MULA(res, _sbc_proto_8[7], in[18]);
MULA(res, _sbc_proto_8[8], in[34]);
MULA(res, _sbc_proto_8[9], in[50]);
MULA(res, _sbc_proto_8[10], in[66]);
t[1] = SCALE8_STAGE1(res);
MUL(res, _sbc_proto_8[11], in[1]);
MULA(res, _sbc_proto_8[12], in[17]);
MULA(res, _sbc_proto_8[13], in[33]);
MULA(res, _sbc_proto_8[14], in[49]);
MULA(res, _sbc_proto_8[15], in[65]);
MULA(res, _sbc_proto_8[16], in[3]);
MULA(res, _sbc_proto_8[17], in[19]);
MULA(res, _sbc_proto_8[18], in[35]);
MULA(res, _sbc_proto_8[19], in[51]);
MULA(res, _sbc_proto_8[20], in[67]);
t[2] = SCALE8_STAGE1(res);
MUL(res, _sbc_proto_8[21], in[5]);
MULA(res, _sbc_proto_8[22], in[21]);
MULA(res, _sbc_proto_8[23], in[37]);
MULA(res, _sbc_proto_8[24], in[53]);
MULA(res, _sbc_proto_8[25], in[69]);
MULA(res, -_sbc_proto_8[15], in[15]);
MULA(res, -_sbc_proto_8[14], in[31]);
MULA(res, -_sbc_proto_8[13], in[47]);
MULA(res, -_sbc_proto_8[12], in[63]);
MULA(res, -_sbc_proto_8[11], in[79]);
t[3] = SCALE8_STAGE1(res);
MUL(res, _sbc_proto_8[26], in[6]);
MULA(res, _sbc_proto_8[27], in[22]);
MULA(res, _sbc_proto_8[28], in[38]);
MULA(res, _sbc_proto_8[29], in[54]);
MULA(res, _sbc_proto_8[30], in[70]);
MULA(res, -_sbc_proto_8[10], in[14]);
MULA(res, -_sbc_proto_8[9], in[30]);
MULA(res, -_sbc_proto_8[8], in[46]);
MULA(res, -_sbc_proto_8[7], in[62]);
MULA(res, -_sbc_proto_8[6], in[78]);
t[4] = SCALE8_STAGE1(res);
MUL(res, _sbc_proto_8[31], in[7]);
MULA(res, _sbc_proto_8[32], in[23]);
MULA(res, _sbc_proto_8[33], in[39]);
MULA(res, _sbc_proto_8[34], in[55]);
MULA(res, _sbc_proto_8[35], in[71]);
MULA(res, -_sbc_proto_8[20], in[13]);
MULA(res, -_sbc_proto_8[19], in[29]);
MULA(res, -_sbc_proto_8[18], in[45]);
MULA(res, -_sbc_proto_8[17], in[61]);
MULA(res, -_sbc_proto_8[16], in[77]);
t[5] = SCALE8_STAGE1(res);
MUL(res, _sbc_proto_8[36], in[8] + in[72]);
MULA(res, _sbc_proto_8[37], in[24] + in[56]);
MULA(res, _sbc_proto_8[38], in[40]);
MULA(res, -_sbc_proto_8[39], in[12]);
MULA(res, -_sbc_proto_8[5], in[28]);
MULA(res, -_sbc_proto_8[4], in[44]);
MULA(res, -_sbc_proto_8[3], in[60]);
MULA(res, -_sbc_proto_8[2], in[76]);
t[6] = SCALE8_STAGE1(res);
MUL(res, _sbc_proto_8[35], in[9]);
MULA(res, _sbc_proto_8[34], in[25]);
MULA(res, _sbc_proto_8[33], in[41]);
MULA(res, _sbc_proto_8[32], in[57]);
MULA(res, _sbc_proto_8[31], in[73]);
MULA(res, -_sbc_proto_8[25], in[11]);
MULA(res, -_sbc_proto_8[24], in[27]);
MULA(res, -_sbc_proto_8[23], in[43]);
MULA(res, -_sbc_proto_8[22], in[59]);
MULA(res, -_sbc_proto_8[21], in[75]);
t[7] = SCALE8_STAGE1(res);
MUL(s[0], _anamatrix8[0], t[0]); /* = Q14 * Q10 */
MULA(s[0], _anamatrix8[1], t[6]);
MUL(s[1], _anamatrix8[7], t[1]);
MUL(s[2], _anamatrix8[2], t[2]);
MULA(s[2], _anamatrix8[3], t[3]);
MULA(s[2], _anamatrix8[4], t[5]);
MULA(s[2], _anamatrix8[5], t[7]);
MUL(s[3], _anamatrix8[6], t[4]);
MUL(s[4], _anamatrix8[3], t[2]);
MULA(s[4], -_anamatrix8[5], t[3]);
MULA(s[4], -_anamatrix8[2], t[5]);
MULA(s[4], -_anamatrix8[4], t[7]);
MUL(s[5], _anamatrix8[4], t[2]);
MULA(s[5], -_anamatrix8[2], t[3]);
MULA(s[5], _anamatrix8[5], t[5]);
MULA(s[5], _anamatrix8[3], t[7]);
MUL(s[6], _anamatrix8[1], t[0]);
MULA(s[6], -_anamatrix8[0], t[6]);
MUL(s[7], _anamatrix8[5], t[2]);
MULA(s[7], -_anamatrix8[4], t[3]);
MULA(s[7], _anamatrix8[3], t[5]);
MULA(s[7], -_anamatrix8[2], t[7]);
out[0] = SCALE8_STAGE2( s[0] + s[1] + s[2] + s[3]);
out[1] = SCALE8_STAGE2( s[1] - s[3] + s[4] + s[6]);
out[2] = SCALE8_STAGE2( s[1] - s[3] + s[5] - s[6]);
out[3] = SCALE8_STAGE2(-s[0] + s[1] + s[3] + s[7]);
out[4] = SCALE8_STAGE2(-s[0] + s[1] + s[3] - s[7]);
out[5] = SCALE8_STAGE2( s[1] - s[3] - s[5] - s[6]);
out[6] = SCALE8_STAGE2( s[1] - s[3] - s[4] + s[6]);
out[7] = SCALE8_STAGE2( s[0] + s[1] - s[2] + s[3]);
}
static inline void sbc_analyze_eight(struct sbc_encoder_state *state,
struct sbc_frame *frame, int ch,
int blk)
{
int32_t *x = &state->X[ch][state->position[ch]];
int16_t *pcm = &frame->pcm_sample[ch][blk * 8];
/* Input 8 Audio Samples */
x[80] = x[0] = pcm[7];
x[81] = x[1] = pcm[6];
x[82] = x[2] = pcm[5];
x[83] = x[3] = pcm[4];
x[84] = x[4] = pcm[3];
x[85] = x[5] = pcm[2];
x[86] = x[6] = pcm[1];
x[87] = x[7] = pcm[0];
_sbc_analyze_eight(x, frame->sb_sample_f[blk][ch]);
state->position[ch] -= 8;
if (state->position[ch] < 0)
state->position[ch] = 72;
}
static int sbc_analyze_audio(struct sbc_encoder_state *state,
struct sbc_frame *frame)
{
int ch, blk;
switch (frame->subbands) {
case 4:
for (ch = 0; ch < frame->channels; ch++)
for (blk = 0; blk < frame->blocks; blk++)
sbc_analyze_four(state, frame, ch, blk);
return frame->blocks * 4;
case 8:
for (ch = 0; ch < frame->channels; ch++)
for (blk = 0; blk < frame->blocks; blk++)
sbc_analyze_eight(state, frame, ch, blk);
return frame->blocks * 8;
default:
return -EIO;
}
}
/*
* Packs the SBC frame from frame into the memory at data. At most len
* bytes will be used, should more memory be needed an appropriate
* error code will be returned. Returns the length of the packed frame
* on success or a negative value on error.
*
* The error codes are:
* -1 Not enough memory reserved
* -2 Unsupported sampling rate
* -3 Unsupported number of blocks
* -4 Unsupported number of subbands
* -5 Bitpool value out of bounds
* -99 not implemented
*/
static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
{
int produced;
/* Will copy the header parts for CRC-8 calculation here */
uint8_t crc_header[11] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
int crc_pos = 0;
/* Sampling frequency as temporary value for table lookup */
uint8_t sf;
uint16_t audio_sample;
int ch, sb, blk, bit; /* channel, subband, block and bit counters */
int bits[2][8]; /* bits distribution */
int levels[2][8]; /* levels are derived from that */
u_int32_t scalefactor[2][8]; /* derived from frame->scale_factor */
data[0] = SBC_SYNCWORD;
if (frame->sampling_frequency == 16000) {
data[1] = (SBC_FS_16 & 0x03) << 6;
sf = SBC_FS_16;
} else if (frame->sampling_frequency == 32000) {
data[1] = (SBC_FS_32 & 0x03) << 6;
sf = SBC_FS_32;
} else if (frame->sampling_frequency == 44100) {
data[1] = (SBC_FS_44 & 0x03) << 6;
sf = SBC_FS_44;
} else if (frame->sampling_frequency == 48000) {
data[1] = (SBC_FS_48 & 0x03) << 6;
sf = SBC_FS_48;
} else
return -2;
switch (frame->blocks) {
case 4:
data[1] |= (SBC_NB_4 & 0x03) << 4;
break;
case 8:
data[1] |= (SBC_NB_8 & 0x03) << 4;
break;
case 12:
data[1] |= (SBC_NB_12 & 0x03) << 4;
break;
case 16:
data[1] |= (SBC_NB_16 & 0x03) << 4;
break;
default:
return -3;
break;
}
data[1] |= (frame->channel_mode & 0x03) << 2;
data[1] |= (frame->allocation_method & 0x01) << 1;
switch (frame->subbands) {
case 4:
/* Nothing to do */
break;
case 8:
data[1] |= 0x01;
break;
default:
return -4;
break;
}
data[2] = frame->bitpool;
if ((frame->channel_mode == MONO || frame->channel_mode == DUAL_CHANNEL) &&
frame->bitpool > frame->subbands << 4)
return -5;
if ((frame->channel_mode == STEREO || frame->channel_mode == JOINT_STEREO) &&
frame->bitpool > frame->subbands << 5)
return -5;
/* Can't fill in crc yet */
produced = 32;
crc_header[0] = data[1];
crc_header[1] = data[2];
crc_pos = 16;
for (ch = 0; ch < frame->channels; ch++) {
for (sb = 0; sb < frame->subbands; sb++) {
frame->scale_factor[ch][sb] = 0;
scalefactor[ch][sb] = 2;
for (blk = 0; blk < frame->blocks; blk++) {
while (scalefactor[ch][sb] < fabs(frame->sb_sample_f[blk][ch][sb])) {
frame->scale_factor[ch][sb]++;
scalefactor[ch][sb] *= 2;
}
}
}
}
if (frame->channel_mode == JOINT_STEREO) {
/* like frame->sb_sample but joint stereo */
int32_t sb_sample_j[16][2];
/* scalefactor and scale_factor in joint case */
u_int32_t scalefactor_j[2];
uint8_t scale_factor_j[2];
frame->join = 0;
for (sb = 0; sb < frame->subbands - 1; sb++) {
scale_factor_j[0] = 0;
scalefactor_j[0] = 2;
scale_factor_j[1] = 0;
scalefactor_j[1] = 2;
for (blk = 0; blk < frame->blocks; blk++) {
/* Calculate joint stereo signal */
sb_sample_j[blk][0] =
(frame->sb_sample_f[blk][0][sb] +
frame->sb_sample_f[blk][1][sb]) >> 1;
sb_sample_j[blk][1] =
(frame->sb_sample_f[blk][0][sb] -
frame->sb_sample_f[blk][1][sb]) >> 1;
/* calculate scale_factor_j and scalefactor_j for joint case */
while (scalefactor_j[0] < fabs(sb_sample_j[blk][0])) {
scale_factor_j[0]++;
scalefactor_j[0] *= 2;
}
while (scalefactor_j[1] < fabs(sb_sample_j[blk][1])) {
scale_factor_j[1]++;
scalefactor_j[1] *= 2;
}
}
/* decide whether to join this subband */
if ((scalefactor[0][sb] + scalefactor[1][sb]) >
(scalefactor_j[0] + scalefactor_j[1]) ) {
/* use joint stereo for this subband */
frame->join |= 1 << sb;
frame->scale_factor[0][sb] = scale_factor_j[0];
frame->scale_factor[1][sb] = scale_factor_j[1];
scalefactor[0][sb] = scalefactor_j[0];
scalefactor[1][sb] = scalefactor_j[1];
for (blk = 0; blk < frame->blocks; blk++) {
frame->sb_sample_f[blk][0][sb] =
sb_sample_j[blk][0];
frame->sb_sample_f[blk][1][sb] =
sb_sample_j[blk][1];
}
}
}
data[4] = 0;
for (sb = 0; sb < frame->subbands - 1; sb++)
data[4] |= ((frame->join >> sb) & 0x01) << (frame->subbands - 1 - sb);
crc_header[crc_pos >> 3] = data[4];
produced += frame->subbands;
crc_pos += frame->subbands;
}
for (ch = 0; ch < frame->channels; ch++) {
for (sb = 0; sb < frame->subbands; sb++) {
data[produced >> 3] <<= 4;
crc_header[crc_pos >> 3] <<= 4;
data[produced >> 3] |= frame->scale_factor[ch][sb] & 0x0F;
crc_header[crc_pos >> 3] |= frame->scale_factor[ch][sb] & 0x0F;
produced += 4;
crc_pos += 4;
}
}
/* align the last crc byte */
if (crc_pos % 8)
crc_header[crc_pos >> 3] <<= 8 - (crc_pos % 8);
data[3] = sbc_crc8(crc_header, crc_pos);
sbc_calculate_bits(frame, bits, sf);
for (ch = 0; ch < frame->channels; ch++) {
for (sb = 0; sb < frame->subbands; sb++)
levels[ch][sb] = (1 << bits[ch][sb]) - 1;
}
for (blk = 0; blk < frame->blocks; blk++) {
for (ch = 0; ch < frame->channels; ch++) {
for (sb = 0; sb < frame->subbands; sb++) {
if (levels[ch][sb] > 0) {
audio_sample =
(uint16_t) ((((frame->sb_sample_f[blk][ch][sb]*levels[ch][sb]) >>
(frame->scale_factor[ch][sb] + 1)) +
levels[ch][sb]) >> 1);
audio_sample <<= 16 - bits[ch][sb];
for (bit = 0; bit < bits[ch][sb]; bit++) {
data[produced >> 3] <<= 1;
if (audio_sample & 0x8000)
data[produced >> 3] |= 0x1;
audio_sample <<= 1;
produced++;
}
}
}
}
}
/* align the last byte */
if (produced % 8) {
data[produced >> 3] <<= 8 - (produced % 8);
}
return (produced + 7) >> 3;
}
struct sbc_priv {
int init;
struct sbc_frame frame;
struct sbc_decoder_state dec_state;
struct sbc_encoder_state enc_state;
};
static void sbc_set_defaults(sbc_t *sbc, unsigned long flags)
{
sbc->rate = 44100;
sbc->channels = 2;
sbc->joint = 0;
sbc->subbands = 8;
sbc->blocks = 16;
sbc->bitpool = 32;
sbc->swap = 0;
}
int sbc_init(sbc_t *sbc, unsigned long flags)
{
if (!sbc)
return -EIO;
memset(sbc, 0, sizeof(sbc_t));
sbc->priv = malloc(sizeof(struct sbc_priv));
if (!sbc->priv)
return -ENOMEM;
memset(sbc->priv, 0, sizeof(struct sbc_priv));
sbc_set_defaults(sbc, flags);
return 0;
}
int sbc_parse(sbc_t *sbc, void *input, int input_len)
{
return sbc_decode(sbc, input, input_len, NULL, 0, NULL);
}
int sbc_decode(sbc_t *sbc, void *input, int input_len, void *output,
int output_len, int *written)
{
struct sbc_priv *priv;
char *ptr;
int i, ch, framelen, samples;
if (!sbc && !input)
return -EIO;
priv = sbc->priv;
framelen = sbc_unpack_frame(input, &priv->frame, input_len);
if (!priv->init) {
sbc_decoder_init(&priv->dec_state, &priv->frame);
priv->init = 1;
sbc->rate = priv->frame.sampling_frequency;
sbc->channels = priv->frame.channels;
sbc->subbands = priv->frame.subbands;
sbc->blocks = priv->frame.blocks;
sbc->bitpool = priv->frame.bitpool;
priv->frame.codesize = sbc_get_codesize(sbc);
priv->frame.length = sbc_get_frame_length(sbc);
}
if (!output)
return framelen;
if (written)
*written = 0;
samples = sbc_synthesize_audio(&priv->dec_state, &priv->frame);
ptr = output;
if (output_len < samples * priv->frame.channels * 2)
samples = output_len / (priv->frame.channels * 2);
for (i = 0; i < samples; i++) {
for (ch = 0; ch < priv->frame.channels; ch++) {
int16_t s;
s = priv->frame.pcm_sample[ch][i];
if (sbc->swap) {
*ptr++ = (s & 0xff00) >> 8;
*ptr++ = (s & 0x00ff);
} else {
*ptr++ = (s & 0x00ff);
*ptr++ = (s & 0xff00) >> 8;
}
}
}
if (written)
*written = samples * priv->frame.channels * 2;
return framelen;
}
int sbc_encode(sbc_t *sbc, void *input, int input_len, void *output,
int output_len, int *written)
{
struct sbc_priv *priv;
char *ptr;
int i, ch, framelen, samples;
if (!sbc && !input)
return -EIO;
priv = sbc->priv;
if (written)
*written = 0;
if (!priv->init) {
priv->frame.sampling_frequency = sbc->rate;
priv->frame.channels = sbc->channels;
if (sbc->channels > 1) {
if (sbc->joint)
priv->frame.channel_mode = JOINT_STEREO;
else
priv->frame.channel_mode = STEREO;
} else
priv->frame.channel_mode = MONO;
priv->frame.allocation_method = sbc->allocation;
priv->frame.subbands = sbc->subbands;
priv->frame.blocks = sbc->blocks;
priv->frame.bitpool = sbc->bitpool;
priv->frame.codesize = sbc_get_codesize(sbc);
priv->frame.length = sbc_get_frame_length(sbc);
sbc_encoder_init(&priv->enc_state, &priv->frame);
priv->init = 1;
}
/* input must be large enough to encode a complete frame */
if (input_len < priv->frame.codesize)
return 0;
/* output must be large enough to receive the encoded frame */
if (!output || output_len < priv->frame.length)
return -ENOSPC;
ptr = input;
for (i = 0; i < priv->frame.subbands * priv->frame.blocks; i++) {
for (ch = 0; ch < sbc->channels; ch++) {
int16_t s;
if (sbc->swap)
s = (ptr[0] & 0xff) << 8 | (ptr[1] & 0xff);
else
s = (ptr[0] & 0xff) | (ptr[1] & 0xff) << 8;
ptr += 2;
priv->frame.pcm_sample[ch][i] = s;
}
}
samples = sbc_analyze_audio(&priv->enc_state, &priv->frame);
framelen = sbc_pack_frame(output, &priv->frame, output_len);
if (written)
*written = framelen;
return samples * sbc->channels * 2;
}
void sbc_finish(sbc_t *sbc)
{
if (!sbc)
return;
if (sbc->priv)
free(sbc->priv);
memset(sbc, 0, sizeof(sbc_t));
}
int sbc_get_frame_length(sbc_t *sbc)
{
int ret;
ret = 4 + (4 * sbc->subbands * sbc->channels) / 8;
/* This term is not always evenly divide so we round it up */
if (sbc->channels == 1)
ret += ((sbc->blocks * sbc->channels * sbc->bitpool) + 7) / 8;
else
ret += (((sbc->joint ? sbc->subbands : 0) + sbc->blocks * sbc->bitpool)
+ 7) / 8;
return ret;
}
int sbc_get_frame_duration(sbc_t *sbc)
{
return (1000000 * sbc->blocks * sbc->subbands) / sbc->rate;
}
int sbc_get_codesize(sbc_t *sbc)
{
return sbc->subbands * sbc->blocks * sbc->channels * 2;
}
int sbc_reinit(sbc_t *sbc, unsigned long flags)
{
struct sbc_priv *priv;
if (!sbc || !sbc->priv)
return -EIO;
priv = sbc->priv;
if (priv->init == 1)
memset(sbc->priv, 0, sizeof(struct sbc_priv));
sbc_set_defaults(sbc, flags);
return 0;
}