mirror of
https://git.kernel.org/pub/scm/bluetooth/bluez.git
synced 2024-12-12 05:24:19 +08:00
ffdd4f5817
Timestamp is taken on each OTA beacon reception, and considered in the SecondsSinceLastHeard property.
526 lines
12 KiB
C
526 lines
12 KiB
C
/*
|
|
*
|
|
* BlueZ - Bluetooth protocol stack for Linux
|
|
*
|
|
* Copyright (C) 2019 Intel Corporation. All rights reserved.
|
|
*
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#include <ell/ell.h>
|
|
|
|
#include "mesh/mesh-defs.h"
|
|
#include "mesh/util.h"
|
|
#include "mesh/crypto.h"
|
|
#include "mesh/mesh-io.h"
|
|
#include "mesh/net.h"
|
|
#include "mesh/net-keys.h"
|
|
|
|
#define BEACON_TYPE_SNB 0x01
|
|
#define KEY_REFRESH 0x01
|
|
#define IV_INDEX_UPDATE 0x02
|
|
|
|
#define BEACON_INTERVAL_MIN 10
|
|
#define BEACON_INTERVAL_MAX 600
|
|
|
|
struct net_beacon {
|
|
struct l_timeout *timeout;
|
|
uint32_t ts;
|
|
uint16_t observe_period;
|
|
uint16_t observed;
|
|
uint16_t expected;
|
|
bool half_period;
|
|
uint8_t beacon[23];
|
|
};
|
|
|
|
struct net_key {
|
|
uint32_t id;
|
|
struct net_beacon snb;
|
|
uint16_t ref_cnt;
|
|
uint16_t beacon_enables;
|
|
uint8_t friend_key;
|
|
uint8_t nid;
|
|
uint8_t master[16];
|
|
uint8_t encrypt[16];
|
|
uint8_t privacy[16];
|
|
uint8_t beacon[16];
|
|
uint8_t network[8];
|
|
};
|
|
|
|
static struct l_queue *keys = NULL;
|
|
static uint32_t last_master_id = 0;
|
|
|
|
/* To avoid re-decrypting same packet for multiple nodes, cache and check */
|
|
static uint8_t cache_pkt[29];
|
|
static uint8_t cache_plain[29];
|
|
static size_t cache_len;
|
|
static size_t cache_plainlen;
|
|
static uint32_t cache_id;
|
|
static uint32_t cache_iv_index;
|
|
|
|
static bool match_master(const void *a, const void *b)
|
|
{
|
|
const struct net_key *key = a;
|
|
|
|
return (memcmp(key->master, b, sizeof(key->master)) == 0);
|
|
}
|
|
|
|
static bool match_id(const void *a, const void *b)
|
|
{
|
|
const struct net_key *key = a;
|
|
uint32_t id = L_PTR_TO_UINT(b);
|
|
|
|
return id == key->id;
|
|
}
|
|
|
|
static bool match_network(const void *a, const void *b)
|
|
{
|
|
const struct net_key *key = a;
|
|
const uint8_t *network = b;
|
|
|
|
return memcmp(key->network, network, sizeof(key->network)) == 0;
|
|
}
|
|
|
|
/* Key added from Provisioning, NetKey Add or NetKey update */
|
|
uint32_t net_key_add(const uint8_t master[16])
|
|
{
|
|
struct net_key *key = l_queue_find(keys, match_master, master);
|
|
uint8_t p[] = {0};
|
|
bool result;
|
|
|
|
if (key) {
|
|
key->ref_cnt++;
|
|
return key->id;
|
|
}
|
|
|
|
if (!keys)
|
|
keys = l_queue_new();
|
|
|
|
key = l_new(struct net_key, 1);
|
|
memcpy(key->master, master, 16);
|
|
key->ref_cnt++;
|
|
result = mesh_crypto_k2(master, p, sizeof(p), &key->nid, key->encrypt,
|
|
key->privacy);
|
|
if (!result)
|
|
goto fail;
|
|
|
|
result = mesh_crypto_k3(master, key->network);
|
|
if (!result)
|
|
goto fail;
|
|
|
|
result = mesh_crypto_nkbk(master, key->beacon);
|
|
if (!result)
|
|
goto fail;
|
|
|
|
key->id = ++last_master_id;
|
|
l_queue_push_tail(keys, key);
|
|
return key->id;
|
|
|
|
fail:
|
|
l_free(key);
|
|
return 0;
|
|
}
|
|
|
|
uint32_t net_key_frnd_add(uint32_t master_id, uint16_t lpn, uint16_t frnd,
|
|
uint16_t lp_cnt, uint16_t fn_cnt)
|
|
{
|
|
const struct net_key *key = l_queue_find(keys, match_id,
|
|
L_UINT_TO_PTR(master_id));
|
|
struct net_key *frnd_key;
|
|
uint8_t p[9] = {0x01};
|
|
bool result;
|
|
|
|
if (!key || key->friend_key)
|
|
return 0;
|
|
|
|
frnd_key = l_new(struct net_key, 1);
|
|
|
|
l_put_be16(lpn, p + 1);
|
|
l_put_be16(frnd, p + 3);
|
|
l_put_be16(lp_cnt, p + 5);
|
|
l_put_be16(fn_cnt, p + 7);
|
|
|
|
result = mesh_crypto_k2(key->master, p, sizeof(p), &frnd_key->nid,
|
|
frnd_key->encrypt, frnd_key->privacy);
|
|
|
|
if (!result) {
|
|
l_free(frnd_key);
|
|
return 0;
|
|
}
|
|
|
|
frnd_key->friend_key = true;
|
|
frnd_key->ref_cnt++;
|
|
frnd_key->id = ++last_master_id;
|
|
l_queue_push_head(keys, frnd_key);
|
|
|
|
return frnd_key->id;
|
|
}
|
|
|
|
void net_key_unref(uint32_t id)
|
|
{
|
|
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
|
|
|
|
if (key && key->ref_cnt) {
|
|
if (--key->ref_cnt == 0) {
|
|
l_timeout_remove(key->snb.timeout);
|
|
l_queue_remove(keys, key);
|
|
l_free(key);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool net_key_confirm(uint32_t id, const uint8_t *master)
|
|
{
|
|
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
|
|
|
|
if (key)
|
|
return memcmp(key->master, master, sizeof(key->master)) == 0;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool net_key_retrieve(uint32_t id, uint8_t *master)
|
|
{
|
|
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
|
|
|
|
if (key) {
|
|
memcpy(master, key->master, sizeof(key->master));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void decrypt_net_pkt(void *a, void *b)
|
|
{
|
|
const struct net_key *key = a;
|
|
bool result;
|
|
|
|
if (cache_id || !key->ref_cnt || (cache_pkt[0] & 0x7f) != key->nid)
|
|
return;
|
|
|
|
result = mesh_crypto_packet_decode(cache_pkt, cache_len, false,
|
|
cache_plain, cache_iv_index,
|
|
key->encrypt, key->privacy);
|
|
|
|
if (result) {
|
|
cache_id = key->id;
|
|
if (cache_plain[1] & 0x80)
|
|
cache_plainlen = cache_len - 8;
|
|
else
|
|
cache_plainlen = cache_len - 4;
|
|
}
|
|
}
|
|
|
|
uint32_t net_key_decrypt(uint32_t iv_index, const uint8_t *pkt, size_t len,
|
|
uint8_t **plain, size_t *plain_len)
|
|
{
|
|
/* If we already successfully decrypted this packet, use cached data */
|
|
if (cache_id && cache_len == len && !memcmp(pkt, cache_pkt, len)) {
|
|
/* IV Index must match what was used to decrypt */
|
|
if (cache_iv_index != iv_index)
|
|
return 0;
|
|
|
|
goto done;
|
|
}
|
|
|
|
cache_id = 0;
|
|
memcpy(cache_pkt, pkt, len);
|
|
cache_len = len;
|
|
cache_iv_index = iv_index;
|
|
|
|
/* Try all network keys known to us */
|
|
l_queue_foreach(keys, decrypt_net_pkt, NULL);
|
|
|
|
done:
|
|
if (cache_id) {
|
|
*plain = cache_plain;
|
|
*plain_len = cache_plainlen;
|
|
}
|
|
|
|
return cache_id;
|
|
}
|
|
|
|
bool net_key_encrypt(uint32_t id, uint32_t iv_index, uint8_t *pkt, size_t len)
|
|
{
|
|
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
|
|
bool result;
|
|
|
|
if (!key)
|
|
return false;
|
|
|
|
result = mesh_crypto_packet_encode(pkt, len, key->encrypt, iv_index,
|
|
key->privacy);
|
|
|
|
if (!result)
|
|
return false;
|
|
|
|
result = mesh_crypto_packet_label(pkt, len, iv_index, key->nid);
|
|
|
|
return result;
|
|
}
|
|
|
|
uint32_t net_key_network_id(const uint8_t network[8])
|
|
{
|
|
struct net_key *key = l_queue_find(keys, match_network, network);
|
|
|
|
if (!key)
|
|
return 0;
|
|
|
|
return key->id;
|
|
}
|
|
|
|
bool net_key_snb_check(uint32_t id, uint32_t iv_index, bool kr, bool ivu,
|
|
uint64_t cmac)
|
|
{
|
|
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
|
|
uint64_t cmac_check;
|
|
|
|
if (!key)
|
|
return false;
|
|
|
|
/* Any behavioral changes must pass CMAC test */
|
|
if (!mesh_crypto_beacon_cmac(key->beacon, key->network, iv_index, kr,
|
|
ivu, &cmac_check)) {
|
|
l_error("mesh_crypto_beacon_cmac failed");
|
|
return false;
|
|
}
|
|
|
|
if (cmac != cmac_check) {
|
|
l_error("cmac compare failed 0x%16" PRIx64 " != 0x%16" PRIx64,
|
|
cmac, cmac_check);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool net_key_snb_compose(uint32_t id, uint32_t iv_index, bool kr, bool ivu,
|
|
uint8_t *snb)
|
|
{
|
|
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
|
|
uint64_t cmac;
|
|
|
|
if (!key)
|
|
return false;
|
|
|
|
/* Any behavioral changes must pass CMAC test */
|
|
if (!mesh_crypto_beacon_cmac(key->beacon, key->network, iv_index, kr,
|
|
ivu, &cmac)) {
|
|
l_error("mesh_crypto_beacon_cmac failed");
|
|
return false;
|
|
}
|
|
|
|
snb[0] = MESH_AD_TYPE_BEACON;
|
|
snb[1] = BEACON_TYPE_SNB;
|
|
snb[2] = 0;
|
|
|
|
if (kr)
|
|
snb[2] |= KEY_REFRESH;
|
|
|
|
if (ivu)
|
|
snb[2] |= IV_INDEX_UPDATE;
|
|
|
|
memcpy(snb + 3, key->network, 8);
|
|
l_put_be32(iv_index, snb + 11);
|
|
l_put_be64(cmac, snb + 15);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void send_network_beacon(struct net_key *key)
|
|
{
|
|
struct mesh_io_send_info info = {
|
|
.type = MESH_IO_TIMING_TYPE_GENERAL,
|
|
.u.gen.interval = 100,
|
|
.u.gen.cnt = 1,
|
|
.u.gen.min_delay = DEFAULT_MIN_DELAY,
|
|
.u.gen.max_delay = DEFAULT_MAX_DELAY
|
|
};
|
|
|
|
mesh_io_send(NULL, &info, key->snb.beacon, sizeof(key->snb.beacon));
|
|
}
|
|
|
|
static void snb_timeout(struct l_timeout *timeout, void *user_data)
|
|
{
|
|
struct net_key *key = user_data;
|
|
uint32_t interval, scale_factor;
|
|
|
|
/* Always send at least one beacon */
|
|
send_network_beacon(key);
|
|
|
|
/* Count our own beacons towards the vicinity total */
|
|
key->snb.observed++;
|
|
|
|
if (!key->snb.half_period) {
|
|
|
|
l_debug("beacon %d for %d nodes, period %d, obs %d, exp %d",
|
|
key->id,
|
|
key->beacon_enables,
|
|
key->snb.observe_period,
|
|
key->snb.observed,
|
|
key->snb.expected);
|
|
|
|
|
|
interval = (key->snb.observe_period * key->snb.observed)
|
|
/ key->snb.expected;
|
|
|
|
/* Limit Increases and Decreases by 10 seconds Up and
|
|
* 20 seconds down each step, to avoid going nearly silent
|
|
* in highly populated environments.
|
|
*/
|
|
if (interval - 10 > key->snb.observe_period)
|
|
interval = key->snb.observe_period + 10;
|
|
else if (interval + 20 < key->snb.observe_period)
|
|
interval = key->snb.observe_period - 20;
|
|
|
|
/* Beaconing must be no *slower* than once every 10 minutes,
|
|
* and no *faster* than once every 10 seconds, per spec.
|
|
* Observation period is twice beaconing period.
|
|
*/
|
|
if (interval < BEACON_INTERVAL_MIN * 2)
|
|
interval = BEACON_INTERVAL_MIN * 2;
|
|
else if (interval > BEACON_INTERVAL_MAX * 2)
|
|
interval = BEACON_INTERVAL_MAX * 2;
|
|
|
|
key->snb.observe_period = interval;
|
|
key->snb.observed = 0;
|
|
|
|
/* To prevent "over slowing" of the beaconing frequency,
|
|
* require more significant "over observing" the slower
|
|
* our own beaconing frequency.
|
|
*/
|
|
key->snb.expected = interval / 10;
|
|
scale_factor = interval / 60;
|
|
key->snb.expected += scale_factor * 3;
|
|
}
|
|
|
|
interval = key->snb.observe_period / 2;
|
|
key->snb.half_period = !key->snb.half_period;
|
|
|
|
if (key->beacon_enables)
|
|
l_timeout_modify(timeout, interval);
|
|
else {
|
|
l_timeout_remove(timeout);
|
|
key->snb.timeout = NULL;
|
|
}
|
|
}
|
|
|
|
void net_key_beacon_seen(uint32_t id)
|
|
{
|
|
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
|
|
|
|
if (key) {
|
|
key->snb.observed++;
|
|
key->snb.ts = get_timestamp_secs();
|
|
}
|
|
}
|
|
|
|
uint32_t net_key_beacon_last_seen(uint32_t id)
|
|
{
|
|
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
|
|
|
|
if (key)
|
|
return key->snb.ts;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void net_key_beacon_enable(uint32_t id)
|
|
{
|
|
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
|
|
bool enabled;
|
|
uint32_t rand_ms;
|
|
|
|
if (!key)
|
|
return;
|
|
|
|
enabled = !!key->beacon_enables;
|
|
key->beacon_enables++;
|
|
|
|
/* If already Enabled, do nothing */
|
|
if (enabled)
|
|
return;
|
|
|
|
/* Randomize first timeout to avoid bursts of beacons */
|
|
l_getrandom(&rand_ms, sizeof(rand_ms));
|
|
rand_ms %= (BEACON_INTERVAL_MIN * 1000);
|
|
rand_ms++;
|
|
|
|
/* Enable Periodic Beaconing on this key */
|
|
key->snb.observe_period = BEACON_INTERVAL_MIN * 2;
|
|
key->snb.expected = 2;
|
|
key->snb.observed = 0;
|
|
key->snb.half_period = true;
|
|
l_timeout_remove(key->snb.timeout);
|
|
key->snb.timeout = l_timeout_create_ms(rand_ms, snb_timeout, key, NULL);
|
|
}
|
|
|
|
bool net_key_beacon_refresh(uint32_t id, uint32_t iv_index, bool kr, bool ivu)
|
|
{
|
|
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
|
|
uint8_t beacon[23];
|
|
uint32_t rand_ms;
|
|
|
|
if (!key)
|
|
return false;
|
|
|
|
if (!net_key_snb_compose(id, iv_index, kr, ivu, beacon))
|
|
return false;
|
|
|
|
if (memcmp(key->snb.beacon, beacon, sizeof(beacon)))
|
|
memcpy(key->snb.beacon, beacon, sizeof(beacon));
|
|
else
|
|
return false;
|
|
|
|
l_debug("Setting SNB: IVI: %8.8x, IVU: %d, KR: %d", iv_index, ivu, kr);
|
|
print_packet("Set SNB Beacon to", beacon, sizeof(beacon));
|
|
|
|
/* Propagate changes to all local nodes */
|
|
net_local_beacon(id, beacon);
|
|
|
|
/* Send one new SNB soon, after all nodes have seen it */
|
|
l_getrandom(&rand_ms, sizeof(rand_ms));
|
|
rand_ms %= 1000;
|
|
key->snb.expected++;
|
|
|
|
if (key->snb.timeout)
|
|
l_timeout_modify_ms(key->snb.timeout, 500 + rand_ms);
|
|
else
|
|
key->snb.timeout = l_timeout_create_ms(500 + rand_ms,
|
|
snb_timeout, key, NULL);
|
|
|
|
return true;
|
|
}
|
|
|
|
void net_key_beacon_disable(uint32_t id)
|
|
{
|
|
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
|
|
|
|
if (!key || !key->beacon_enables)
|
|
return;
|
|
|
|
key->beacon_enables--;
|
|
|
|
if (key->beacon_enables)
|
|
return;
|
|
|
|
/* Disable periodic Beaconing on this key */
|
|
l_timeout_remove(key->snb.timeout);
|
|
key->snb.timeout = NULL;
|
|
}
|