bluez/mesh/net-keys.c
Brian Gix ffdd4f5817 mesh: Recognize SNBs in SecondsSinceLastHeard
Timestamp is taken on each OTA beacon reception, and considered in the
SecondsSinceLastHeard property.
2019-12-24 10:38:34 -08:00

526 lines
12 KiB
C

/*
*
* BlueZ - Bluetooth protocol stack for Linux
*
* Copyright (C) 2019 Intel Corporation. All rights reserved.
*
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <ell/ell.h>
#include "mesh/mesh-defs.h"
#include "mesh/util.h"
#include "mesh/crypto.h"
#include "mesh/mesh-io.h"
#include "mesh/net.h"
#include "mesh/net-keys.h"
#define BEACON_TYPE_SNB 0x01
#define KEY_REFRESH 0x01
#define IV_INDEX_UPDATE 0x02
#define BEACON_INTERVAL_MIN 10
#define BEACON_INTERVAL_MAX 600
struct net_beacon {
struct l_timeout *timeout;
uint32_t ts;
uint16_t observe_period;
uint16_t observed;
uint16_t expected;
bool half_period;
uint8_t beacon[23];
};
struct net_key {
uint32_t id;
struct net_beacon snb;
uint16_t ref_cnt;
uint16_t beacon_enables;
uint8_t friend_key;
uint8_t nid;
uint8_t master[16];
uint8_t encrypt[16];
uint8_t privacy[16];
uint8_t beacon[16];
uint8_t network[8];
};
static struct l_queue *keys = NULL;
static uint32_t last_master_id = 0;
/* To avoid re-decrypting same packet for multiple nodes, cache and check */
static uint8_t cache_pkt[29];
static uint8_t cache_plain[29];
static size_t cache_len;
static size_t cache_plainlen;
static uint32_t cache_id;
static uint32_t cache_iv_index;
static bool match_master(const void *a, const void *b)
{
const struct net_key *key = a;
return (memcmp(key->master, b, sizeof(key->master)) == 0);
}
static bool match_id(const void *a, const void *b)
{
const struct net_key *key = a;
uint32_t id = L_PTR_TO_UINT(b);
return id == key->id;
}
static bool match_network(const void *a, const void *b)
{
const struct net_key *key = a;
const uint8_t *network = b;
return memcmp(key->network, network, sizeof(key->network)) == 0;
}
/* Key added from Provisioning, NetKey Add or NetKey update */
uint32_t net_key_add(const uint8_t master[16])
{
struct net_key *key = l_queue_find(keys, match_master, master);
uint8_t p[] = {0};
bool result;
if (key) {
key->ref_cnt++;
return key->id;
}
if (!keys)
keys = l_queue_new();
key = l_new(struct net_key, 1);
memcpy(key->master, master, 16);
key->ref_cnt++;
result = mesh_crypto_k2(master, p, sizeof(p), &key->nid, key->encrypt,
key->privacy);
if (!result)
goto fail;
result = mesh_crypto_k3(master, key->network);
if (!result)
goto fail;
result = mesh_crypto_nkbk(master, key->beacon);
if (!result)
goto fail;
key->id = ++last_master_id;
l_queue_push_tail(keys, key);
return key->id;
fail:
l_free(key);
return 0;
}
uint32_t net_key_frnd_add(uint32_t master_id, uint16_t lpn, uint16_t frnd,
uint16_t lp_cnt, uint16_t fn_cnt)
{
const struct net_key *key = l_queue_find(keys, match_id,
L_UINT_TO_PTR(master_id));
struct net_key *frnd_key;
uint8_t p[9] = {0x01};
bool result;
if (!key || key->friend_key)
return 0;
frnd_key = l_new(struct net_key, 1);
l_put_be16(lpn, p + 1);
l_put_be16(frnd, p + 3);
l_put_be16(lp_cnt, p + 5);
l_put_be16(fn_cnt, p + 7);
result = mesh_crypto_k2(key->master, p, sizeof(p), &frnd_key->nid,
frnd_key->encrypt, frnd_key->privacy);
if (!result) {
l_free(frnd_key);
return 0;
}
frnd_key->friend_key = true;
frnd_key->ref_cnt++;
frnd_key->id = ++last_master_id;
l_queue_push_head(keys, frnd_key);
return frnd_key->id;
}
void net_key_unref(uint32_t id)
{
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
if (key && key->ref_cnt) {
if (--key->ref_cnt == 0) {
l_timeout_remove(key->snb.timeout);
l_queue_remove(keys, key);
l_free(key);
}
}
}
bool net_key_confirm(uint32_t id, const uint8_t *master)
{
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
if (key)
return memcmp(key->master, master, sizeof(key->master)) == 0;
return false;
}
bool net_key_retrieve(uint32_t id, uint8_t *master)
{
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
if (key) {
memcpy(master, key->master, sizeof(key->master));
return true;
}
return false;
}
static void decrypt_net_pkt(void *a, void *b)
{
const struct net_key *key = a;
bool result;
if (cache_id || !key->ref_cnt || (cache_pkt[0] & 0x7f) != key->nid)
return;
result = mesh_crypto_packet_decode(cache_pkt, cache_len, false,
cache_plain, cache_iv_index,
key->encrypt, key->privacy);
if (result) {
cache_id = key->id;
if (cache_plain[1] & 0x80)
cache_plainlen = cache_len - 8;
else
cache_plainlen = cache_len - 4;
}
}
uint32_t net_key_decrypt(uint32_t iv_index, const uint8_t *pkt, size_t len,
uint8_t **plain, size_t *plain_len)
{
/* If we already successfully decrypted this packet, use cached data */
if (cache_id && cache_len == len && !memcmp(pkt, cache_pkt, len)) {
/* IV Index must match what was used to decrypt */
if (cache_iv_index != iv_index)
return 0;
goto done;
}
cache_id = 0;
memcpy(cache_pkt, pkt, len);
cache_len = len;
cache_iv_index = iv_index;
/* Try all network keys known to us */
l_queue_foreach(keys, decrypt_net_pkt, NULL);
done:
if (cache_id) {
*plain = cache_plain;
*plain_len = cache_plainlen;
}
return cache_id;
}
bool net_key_encrypt(uint32_t id, uint32_t iv_index, uint8_t *pkt, size_t len)
{
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
bool result;
if (!key)
return false;
result = mesh_crypto_packet_encode(pkt, len, key->encrypt, iv_index,
key->privacy);
if (!result)
return false;
result = mesh_crypto_packet_label(pkt, len, iv_index, key->nid);
return result;
}
uint32_t net_key_network_id(const uint8_t network[8])
{
struct net_key *key = l_queue_find(keys, match_network, network);
if (!key)
return 0;
return key->id;
}
bool net_key_snb_check(uint32_t id, uint32_t iv_index, bool kr, bool ivu,
uint64_t cmac)
{
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
uint64_t cmac_check;
if (!key)
return false;
/* Any behavioral changes must pass CMAC test */
if (!mesh_crypto_beacon_cmac(key->beacon, key->network, iv_index, kr,
ivu, &cmac_check)) {
l_error("mesh_crypto_beacon_cmac failed");
return false;
}
if (cmac != cmac_check) {
l_error("cmac compare failed 0x%16" PRIx64 " != 0x%16" PRIx64,
cmac, cmac_check);
return false;
}
return true;
}
bool net_key_snb_compose(uint32_t id, uint32_t iv_index, bool kr, bool ivu,
uint8_t *snb)
{
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
uint64_t cmac;
if (!key)
return false;
/* Any behavioral changes must pass CMAC test */
if (!mesh_crypto_beacon_cmac(key->beacon, key->network, iv_index, kr,
ivu, &cmac)) {
l_error("mesh_crypto_beacon_cmac failed");
return false;
}
snb[0] = MESH_AD_TYPE_BEACON;
snb[1] = BEACON_TYPE_SNB;
snb[2] = 0;
if (kr)
snb[2] |= KEY_REFRESH;
if (ivu)
snb[2] |= IV_INDEX_UPDATE;
memcpy(snb + 3, key->network, 8);
l_put_be32(iv_index, snb + 11);
l_put_be64(cmac, snb + 15);
return true;
}
static void send_network_beacon(struct net_key *key)
{
struct mesh_io_send_info info = {
.type = MESH_IO_TIMING_TYPE_GENERAL,
.u.gen.interval = 100,
.u.gen.cnt = 1,
.u.gen.min_delay = DEFAULT_MIN_DELAY,
.u.gen.max_delay = DEFAULT_MAX_DELAY
};
mesh_io_send(NULL, &info, key->snb.beacon, sizeof(key->snb.beacon));
}
static void snb_timeout(struct l_timeout *timeout, void *user_data)
{
struct net_key *key = user_data;
uint32_t interval, scale_factor;
/* Always send at least one beacon */
send_network_beacon(key);
/* Count our own beacons towards the vicinity total */
key->snb.observed++;
if (!key->snb.half_period) {
l_debug("beacon %d for %d nodes, period %d, obs %d, exp %d",
key->id,
key->beacon_enables,
key->snb.observe_period,
key->snb.observed,
key->snb.expected);
interval = (key->snb.observe_period * key->snb.observed)
/ key->snb.expected;
/* Limit Increases and Decreases by 10 seconds Up and
* 20 seconds down each step, to avoid going nearly silent
* in highly populated environments.
*/
if (interval - 10 > key->snb.observe_period)
interval = key->snb.observe_period + 10;
else if (interval + 20 < key->snb.observe_period)
interval = key->snb.observe_period - 20;
/* Beaconing must be no *slower* than once every 10 minutes,
* and no *faster* than once every 10 seconds, per spec.
* Observation period is twice beaconing period.
*/
if (interval < BEACON_INTERVAL_MIN * 2)
interval = BEACON_INTERVAL_MIN * 2;
else if (interval > BEACON_INTERVAL_MAX * 2)
interval = BEACON_INTERVAL_MAX * 2;
key->snb.observe_period = interval;
key->snb.observed = 0;
/* To prevent "over slowing" of the beaconing frequency,
* require more significant "over observing" the slower
* our own beaconing frequency.
*/
key->snb.expected = interval / 10;
scale_factor = interval / 60;
key->snb.expected += scale_factor * 3;
}
interval = key->snb.observe_period / 2;
key->snb.half_period = !key->snb.half_period;
if (key->beacon_enables)
l_timeout_modify(timeout, interval);
else {
l_timeout_remove(timeout);
key->snb.timeout = NULL;
}
}
void net_key_beacon_seen(uint32_t id)
{
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
if (key) {
key->snb.observed++;
key->snb.ts = get_timestamp_secs();
}
}
uint32_t net_key_beacon_last_seen(uint32_t id)
{
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
if (key)
return key->snb.ts;
return 0;
}
void net_key_beacon_enable(uint32_t id)
{
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
bool enabled;
uint32_t rand_ms;
if (!key)
return;
enabled = !!key->beacon_enables;
key->beacon_enables++;
/* If already Enabled, do nothing */
if (enabled)
return;
/* Randomize first timeout to avoid bursts of beacons */
l_getrandom(&rand_ms, sizeof(rand_ms));
rand_ms %= (BEACON_INTERVAL_MIN * 1000);
rand_ms++;
/* Enable Periodic Beaconing on this key */
key->snb.observe_period = BEACON_INTERVAL_MIN * 2;
key->snb.expected = 2;
key->snb.observed = 0;
key->snb.half_period = true;
l_timeout_remove(key->snb.timeout);
key->snb.timeout = l_timeout_create_ms(rand_ms, snb_timeout, key, NULL);
}
bool net_key_beacon_refresh(uint32_t id, uint32_t iv_index, bool kr, bool ivu)
{
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
uint8_t beacon[23];
uint32_t rand_ms;
if (!key)
return false;
if (!net_key_snb_compose(id, iv_index, kr, ivu, beacon))
return false;
if (memcmp(key->snb.beacon, beacon, sizeof(beacon)))
memcpy(key->snb.beacon, beacon, sizeof(beacon));
else
return false;
l_debug("Setting SNB: IVI: %8.8x, IVU: %d, KR: %d", iv_index, ivu, kr);
print_packet("Set SNB Beacon to", beacon, sizeof(beacon));
/* Propagate changes to all local nodes */
net_local_beacon(id, beacon);
/* Send one new SNB soon, after all nodes have seen it */
l_getrandom(&rand_ms, sizeof(rand_ms));
rand_ms %= 1000;
key->snb.expected++;
if (key->snb.timeout)
l_timeout_modify_ms(key->snb.timeout, 500 + rand_ms);
else
key->snb.timeout = l_timeout_create_ms(500 + rand_ms,
snb_timeout, key, NULL);
return true;
}
void net_key_beacon_disable(uint32_t id)
{
struct net_key *key = l_queue_find(keys, match_id, L_UINT_TO_PTR(id));
if (!key || !key->beacon_enables)
return;
key->beacon_enables--;
if (key->beacon_enables)
return;
/* Disable periodic Beaconing on this key */
l_timeout_remove(key->snb.timeout);
key->snb.timeout = NULL;
}