bluez/test/bdaddr.c
Lucas De Marchi fcb426c76a Fix common misspelled words
Accounting of misspelled words, as detected by codespell:

acording      2
ancilliary    1
appropiate    1
atribute      1
cant          1
comming       2
gracefull     1
lenght        1
mispelled     1
occured       1
occurences    1
ocurred       3
prefered      1
presense      1
reponse       1
seperate      1
succesful     1
successully   1
sucessfull    1
sucessfully   1
2011-07-03 14:36:14 +03:00

461 lines
9.6 KiB
C

/*
*
* BlueZ - Bluetooth protocol stack for Linux
*
* Copyright (C) 2004-2010 Marcel Holtmann <marcel@holtmann.org>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <getopt.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/hci.h>
#include <bluetooth/hci_lib.h>
#include "oui.h"
static int transient = 0;
static int generic_reset_device(int dd)
{
bdaddr_t bdaddr;
int err;
err = hci_send_cmd(dd, 0x03, 0x0003, 0, NULL);
if (err < 0)
return err;
return hci_read_bd_addr(dd, &bdaddr, 10000);
}
#define OCF_ERICSSON_WRITE_BD_ADDR 0x000d
typedef struct {
bdaddr_t bdaddr;
} __attribute__ ((packed)) ericsson_write_bd_addr_cp;
#define ERICSSON_WRITE_BD_ADDR_CP_SIZE 6
static int ericsson_write_bd_addr(int dd, bdaddr_t *bdaddr)
{
struct hci_request rq;
ericsson_write_bd_addr_cp cp;
memset(&cp, 0, sizeof(cp));
bacpy(&cp.bdaddr, bdaddr);
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_VENDOR_CMD;
rq.ocf = OCF_ERICSSON_WRITE_BD_ADDR;
rq.cparam = &cp;
rq.clen = ERICSSON_WRITE_BD_ADDR_CP_SIZE;
rq.rparam = NULL;
rq.rlen = 0;
if (hci_send_req(dd, &rq, 1000) < 0)
return -1;
return 0;
}
#define OCF_ERICSSON_STORE_IN_FLASH 0x0022
typedef struct {
uint8_t user_id;
uint8_t flash_length;
uint8_t flash_data[253];
} __attribute__ ((packed)) ericsson_store_in_flash_cp;
#define ERICSSON_STORE_IN_FLASH_CP_SIZE 255
static int ericsson_store_in_flash(int dd, uint8_t user_id, uint8_t flash_length, uint8_t *flash_data)
{
struct hci_request rq;
ericsson_store_in_flash_cp cp;
memset(&cp, 0, sizeof(cp));
cp.user_id = user_id;
cp.flash_length = flash_length;
if (flash_length > 0)
memcpy(cp.flash_data, flash_data, flash_length);
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_VENDOR_CMD;
rq.ocf = OCF_ERICSSON_STORE_IN_FLASH;
rq.cparam = &cp;
rq.clen = ERICSSON_STORE_IN_FLASH_CP_SIZE;
rq.rparam = NULL;
rq.rlen = 0;
if (hci_send_req(dd, &rq, 1000) < 0)
return -1;
return 0;
}
static int csr_write_bd_addr(int dd, bdaddr_t *bdaddr)
{
unsigned char cmd[] = { 0x02, 0x00, 0x0c, 0x00, 0x11, 0x47, 0x03, 0x70,
0x00, 0x00, 0x01, 0x00, 0x04, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
unsigned char cp[254], rp[254];
struct hci_request rq;
if (transient)
cmd[14] = 0x08;
cmd[16] = bdaddr->b[2];
cmd[17] = 0x00;
cmd[18] = bdaddr->b[0];
cmd[19] = bdaddr->b[1];
cmd[20] = bdaddr->b[3];
cmd[21] = 0x00;
cmd[22] = bdaddr->b[4];
cmd[23] = bdaddr->b[5];
memset(&cp, 0, sizeof(cp));
cp[0] = 0xc2;
memcpy(cp + 1, cmd, sizeof(cmd));
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_VENDOR_CMD;
rq.ocf = 0x00;
rq.event = EVT_VENDOR;
rq.cparam = cp;
rq.clen = sizeof(cmd) + 1;
rq.rparam = rp;
rq.rlen = sizeof(rp);
if (hci_send_req(dd, &rq, 2000) < 0)
return -1;
if (rp[0] != 0xc2) {
errno = EIO;
return -1;
}
if ((rp[9] + (rp[10] << 8)) != 0) {
errno = ENXIO;
return -1;
}
return 0;
}
static int csr_reset_device(int dd)
{
unsigned char cmd[] = { 0x02, 0x00, 0x09, 0x00,
0x00, 0x00, 0x01, 0x40, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
unsigned char cp[254], rp[254];
struct hci_request rq;
if (transient)
cmd[6] = 0x02;
memset(&cp, 0, sizeof(cp));
cp[0] = 0xc2;
memcpy(cp + 1, cmd, sizeof(cmd));
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_VENDOR_CMD;
rq.ocf = 0x00;
rq.event = EVT_VENDOR;
rq.cparam = cp;
rq.clen = sizeof(cmd) + 1;
rq.rparam = rp;
rq.rlen = sizeof(rp);
if (hci_send_req(dd, &rq, 2000) < 0)
return -1;
return 0;
}
#define OCF_TI_WRITE_BD_ADDR 0x0006
typedef struct {
bdaddr_t bdaddr;
} __attribute__ ((packed)) ti_write_bd_addr_cp;
#define TI_WRITE_BD_ADDR_CP_SIZE 6
static int ti_write_bd_addr(int dd, bdaddr_t *bdaddr)
{
struct hci_request rq;
ti_write_bd_addr_cp cp;
memset(&cp, 0, sizeof(cp));
bacpy(&cp.bdaddr, bdaddr);
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_VENDOR_CMD;
rq.ocf = OCF_TI_WRITE_BD_ADDR;
rq.cparam = &cp;
rq.clen = TI_WRITE_BD_ADDR_CP_SIZE;
rq.rparam = NULL;
rq.rlen = 0;
if (hci_send_req(dd, &rq, 1000) < 0)
return -1;
return 0;
}
#define OCF_BCM_WRITE_BD_ADDR 0x0001
typedef struct {
bdaddr_t bdaddr;
} __attribute__ ((packed)) bcm_write_bd_addr_cp;
#define BCM_WRITE_BD_ADDR_CP_SIZE 6
static int bcm_write_bd_addr(int dd, bdaddr_t *bdaddr)
{
struct hci_request rq;
bcm_write_bd_addr_cp cp;
memset(&cp, 0, sizeof(cp));
bacpy(&cp.bdaddr, bdaddr);
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_VENDOR_CMD;
rq.ocf = OCF_BCM_WRITE_BD_ADDR;
rq.cparam = &cp;
rq.clen = BCM_WRITE_BD_ADDR_CP_SIZE;
rq.rparam = NULL;
rq.rlen = 0;
if (hci_send_req(dd, &rq, 1000) < 0)
return -1;
return 0;
}
#define OCF_ZEEVO_WRITE_BD_ADDR 0x0001
typedef struct {
bdaddr_t bdaddr;
} __attribute__ ((packed)) zeevo_write_bd_addr_cp;
#define ZEEVO_WRITE_BD_ADDR_CP_SIZE 6
static int zeevo_write_bd_addr(int dd, bdaddr_t *bdaddr)
{
struct hci_request rq;
zeevo_write_bd_addr_cp cp;
memset(&cp, 0, sizeof(cp));
bacpy(&cp.bdaddr, bdaddr);
memset(&rq, 0, sizeof(rq));
rq.ogf = OGF_VENDOR_CMD;
rq.ocf = OCF_ZEEVO_WRITE_BD_ADDR;
rq.cparam = &cp;
rq.clen = ZEEVO_WRITE_BD_ADDR_CP_SIZE;
rq.rparam = NULL;
rq.rlen = 0;
if (hci_send_req(dd, &rq, 1000) < 0)
return -1;
return 0;
}
static int st_write_bd_addr(int dd, bdaddr_t *bdaddr)
{
return ericsson_store_in_flash(dd, 0xfe, 6, (uint8_t *) bdaddr);
}
static struct {
uint16_t compid;
int (*write_bd_addr)(int dd, bdaddr_t *bdaddr);
int (*reset_device)(int dd);
} vendor[] = {
{ 0, ericsson_write_bd_addr, NULL },
{ 10, csr_write_bd_addr, csr_reset_device },
{ 13, ti_write_bd_addr, NULL },
{ 15, bcm_write_bd_addr, generic_reset_device },
{ 18, zeevo_write_bd_addr, NULL },
{ 48, st_write_bd_addr, generic_reset_device },
{ 57, ericsson_write_bd_addr, generic_reset_device },
{ 65535, NULL, NULL },
};
static void usage(void)
{
printf("bdaddr - Utility for changing the Bluetooth device address\n\n");
printf("Usage:\n"
"\tbdaddr [-i <dev>] [-r] [-t] [new bdaddr]\n");
}
static struct option main_options[] = {
{ "device", 1, 0, 'i' },
{ "reset", 0, 0, 'r' },
{ "transient", 0, 0, 't' },
{ "help", 0, 0, 'h' },
{ 0, 0, 0, 0 }
};
int main(int argc, char *argv[])
{
struct hci_dev_info di;
struct hci_version ver;
bdaddr_t bdaddr;
char addr[18], oui[9], *comp;
int i, dd, opt, dev = 0, reset = 0;
bacpy(&bdaddr, BDADDR_ANY);
while ((opt=getopt_long(argc, argv, "+i:rth", main_options, NULL)) != -1) {
switch (opt) {
case 'i':
dev = hci_devid(optarg);
if (dev < 0) {
perror("Invalid device");
exit(1);
}
break;
case 'r':
reset = 1;
break;
case 't':
transient = 1;
break;
case 'h':
default:
usage();
exit(0);
}
}
argc -= optind;
argv += optind;
optind = 0;
dd = hci_open_dev(dev);
if (dd < 0) {
fprintf(stderr, "Can't open device hci%d: %s (%d)\n",
dev, strerror(errno), errno);
exit(1);
}
if (hci_devinfo(dev, &di) < 0) {
fprintf(stderr, "Can't get device info for hci%d: %s (%d)\n",
dev, strerror(errno), errno);
hci_close_dev(dd);
exit(1);
}
if (hci_read_local_version(dd, &ver, 1000) < 0) {
fprintf(stderr, "Can't read version info for hci%d: %s (%d)\n",
dev, strerror(errno), errno);
hci_close_dev(dd);
exit(1);
}
if (!bacmp(&di.bdaddr, BDADDR_ANY)) {
if (hci_read_bd_addr(dd, &bdaddr, 1000) < 0) {
fprintf(stderr, "Can't read address for hci%d: %s (%d)\n",
dev, strerror(errno), errno);
hci_close_dev(dd);
exit(1);
}
} else
bacpy(&bdaddr, &di.bdaddr);
printf("Manufacturer: %s (%d)\n",
bt_compidtostr(ver.manufacturer), ver.manufacturer);
ba2oui(&bdaddr, oui);
comp = ouitocomp(oui);
ba2str(&bdaddr, addr);
printf("Device address: %s", addr);
if (comp) {
printf(" (%s)\n", comp);
free(comp);
} else
printf("\n");
if (argc < 1) {
hci_close_dev(dd);
exit(0);
}
str2ba(argv[0], &bdaddr);
if (!bacmp(&bdaddr, BDADDR_ANY)) {
hci_close_dev(dd);
exit(0);
}
for (i = 0; vendor[i].compid != 65535; i++)
if (ver.manufacturer == vendor[i].compid) {
ba2oui(&bdaddr, oui);
comp = ouitocomp(oui);
ba2str(&bdaddr, addr);
printf("New BD address: %s", addr);
if (comp) {
printf(" (%s)\n\n", comp);
free(comp);
} else
printf("\n\n");
if (vendor[i].write_bd_addr(dd, &bdaddr) < 0) {
fprintf(stderr, "Can't write new address\n");
hci_close_dev(dd);
exit(1);
}
printf("Address changed - ");
if (reset && vendor[i].reset_device) {
if (vendor[i].reset_device(dd) < 0) {
printf("Reset device manually\n");
} else {
ioctl(dd, HCIDEVRESET, dev);
printf("Device reset successfully\n");
}
} else {
printf("Reset device now\n");
}
//ioctl(dd, HCIDEVRESET, dev);
//ioctl(dd, HCIDEVDOWN, dev);
//ioctl(dd, HCIDEVUP, dev);
hci_close_dev(dd);
exit(0);
}
hci_close_dev(dd);
printf("\n");
fprintf(stderr, "Unsupported manufacturer\n");
exit(1);
}