mirror of
https://git.kernel.org/pub/scm/bluetooth/bluez.git
synced 2024-11-25 13:14:14 +08:00
f127d461f5
Add iwmmxt optimization for sbc for pxa series cpu. Benchmarked on ARM PXA platform: === Before (4 bands) ==== $ time ./sbcenc_orig -s 4 long.au > /dev/null real 0m 2.44s user 0m 2.39s sys 0m 0.05s === After (4 bands) ==== $ time ./sbcenc -s 4 long.au > /dev/null real 0m 1.59s user 0m 1.49s sys 0m 0.10s === Before (8 bands) ==== $ time ./sbcenc_orig -s 8 long.au > /dev/null real 0m 4.05s user 0m 3.98s sys 0m 0.07s === After (8 bands) ==== $ time ./sbcenc -s 8 long.au > /dev/null real 0m 1.48s user 0m 1.41s sys 0m 0.06s === Before (a2dp usage) ==== $ time ./sbcenc_orig -b53 -s8 -j long.au > /dev/null real 0m 4.51s user 0m 4.41s sys 0m 0.10s === After (a2dp usage) ==== $ time ./sbcenc -b53 -s8 -j long.au > /dev/null real 0m 2.05s user 0m 1.99s sys 0m 0.06s
555 lines
18 KiB
C
555 lines
18 KiB
C
/*
|
|
*
|
|
* Bluetooth low-complexity, subband codec (SBC) library
|
|
*
|
|
* Copyright (C) 2008-2010 Nokia Corporation
|
|
* Copyright (C) 2004-2010 Marcel Holtmann <marcel@holtmann.org>
|
|
* Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch>
|
|
* Copyright (C) 2005-2006 Brad Midgley <bmidgley@xmission.com>
|
|
*
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
#include "sbc.h"
|
|
#include "sbc_math.h"
|
|
#include "sbc_tables.h"
|
|
|
|
#include "sbc_primitives.h"
|
|
#include "sbc_primitives_mmx.h"
|
|
#include "sbc_primitives_iwmmxt.h"
|
|
#include "sbc_primitives_neon.h"
|
|
#include "sbc_primitives_armv6.h"
|
|
|
|
/*
|
|
* A reference C code of analysis filter with SIMD-friendly tables
|
|
* reordering and code layout. This code can be used to develop platform
|
|
* specific SIMD optimizations. Also it may be used as some kind of test
|
|
* for compiler autovectorization capabilities (who knows, if the compiler
|
|
* is very good at this stuff, hand optimized assembly may be not strictly
|
|
* needed for some platform).
|
|
*
|
|
* Note: It is also possible to make a simple variant of analysis filter,
|
|
* which needs only a single constants table without taking care about
|
|
* even/odd cases. This simple variant of filter can be implemented without
|
|
* input data permutation. The only thing that would be lost is the
|
|
* possibility to use pairwise SIMD multiplications. But for some simple
|
|
* CPU cores without SIMD extensions it can be useful. If anybody is
|
|
* interested in implementing such variant of a filter, sourcecode from
|
|
* bluez versions 4.26/4.27 can be used as a reference and the history of
|
|
* the changes in git repository done around that time may be worth checking.
|
|
*/
|
|
|
|
static inline void sbc_analyze_four_simd(const int16_t *in, int32_t *out,
|
|
const FIXED_T *consts)
|
|
{
|
|
FIXED_A t1[4];
|
|
FIXED_T t2[4];
|
|
int hop = 0;
|
|
|
|
/* rounding coefficient */
|
|
t1[0] = t1[1] = t1[2] = t1[3] =
|
|
(FIXED_A) 1 << (SBC_PROTO_FIXED4_SCALE - 1);
|
|
|
|
/* low pass polyphase filter */
|
|
for (hop = 0; hop < 40; hop += 8) {
|
|
t1[0] += (FIXED_A) in[hop] * consts[hop];
|
|
t1[0] += (FIXED_A) in[hop + 1] * consts[hop + 1];
|
|
t1[1] += (FIXED_A) in[hop + 2] * consts[hop + 2];
|
|
t1[1] += (FIXED_A) in[hop + 3] * consts[hop + 3];
|
|
t1[2] += (FIXED_A) in[hop + 4] * consts[hop + 4];
|
|
t1[2] += (FIXED_A) in[hop + 5] * consts[hop + 5];
|
|
t1[3] += (FIXED_A) in[hop + 6] * consts[hop + 6];
|
|
t1[3] += (FIXED_A) in[hop + 7] * consts[hop + 7];
|
|
}
|
|
|
|
/* scaling */
|
|
t2[0] = t1[0] >> SBC_PROTO_FIXED4_SCALE;
|
|
t2[1] = t1[1] >> SBC_PROTO_FIXED4_SCALE;
|
|
t2[2] = t1[2] >> SBC_PROTO_FIXED4_SCALE;
|
|
t2[3] = t1[3] >> SBC_PROTO_FIXED4_SCALE;
|
|
|
|
/* do the cos transform */
|
|
t1[0] = (FIXED_A) t2[0] * consts[40 + 0];
|
|
t1[0] += (FIXED_A) t2[1] * consts[40 + 1];
|
|
t1[1] = (FIXED_A) t2[0] * consts[40 + 2];
|
|
t1[1] += (FIXED_A) t2[1] * consts[40 + 3];
|
|
t1[2] = (FIXED_A) t2[0] * consts[40 + 4];
|
|
t1[2] += (FIXED_A) t2[1] * consts[40 + 5];
|
|
t1[3] = (FIXED_A) t2[0] * consts[40 + 6];
|
|
t1[3] += (FIXED_A) t2[1] * consts[40 + 7];
|
|
|
|
t1[0] += (FIXED_A) t2[2] * consts[40 + 8];
|
|
t1[0] += (FIXED_A) t2[3] * consts[40 + 9];
|
|
t1[1] += (FIXED_A) t2[2] * consts[40 + 10];
|
|
t1[1] += (FIXED_A) t2[3] * consts[40 + 11];
|
|
t1[2] += (FIXED_A) t2[2] * consts[40 + 12];
|
|
t1[2] += (FIXED_A) t2[3] * consts[40 + 13];
|
|
t1[3] += (FIXED_A) t2[2] * consts[40 + 14];
|
|
t1[3] += (FIXED_A) t2[3] * consts[40 + 15];
|
|
|
|
out[0] = t1[0] >>
|
|
(SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
|
|
out[1] = t1[1] >>
|
|
(SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
|
|
out[2] = t1[2] >>
|
|
(SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
|
|
out[3] = t1[3] >>
|
|
(SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
|
|
}
|
|
|
|
static inline void sbc_analyze_eight_simd(const int16_t *in, int32_t *out,
|
|
const FIXED_T *consts)
|
|
{
|
|
FIXED_A t1[8];
|
|
FIXED_T t2[8];
|
|
int i, hop;
|
|
|
|
/* rounding coefficient */
|
|
t1[0] = t1[1] = t1[2] = t1[3] = t1[4] = t1[5] = t1[6] = t1[7] =
|
|
(FIXED_A) 1 << (SBC_PROTO_FIXED8_SCALE-1);
|
|
|
|
/* low pass polyphase filter */
|
|
for (hop = 0; hop < 80; hop += 16) {
|
|
t1[0] += (FIXED_A) in[hop] * consts[hop];
|
|
t1[0] += (FIXED_A) in[hop + 1] * consts[hop + 1];
|
|
t1[1] += (FIXED_A) in[hop + 2] * consts[hop + 2];
|
|
t1[1] += (FIXED_A) in[hop + 3] * consts[hop + 3];
|
|
t1[2] += (FIXED_A) in[hop + 4] * consts[hop + 4];
|
|
t1[2] += (FIXED_A) in[hop + 5] * consts[hop + 5];
|
|
t1[3] += (FIXED_A) in[hop + 6] * consts[hop + 6];
|
|
t1[3] += (FIXED_A) in[hop + 7] * consts[hop + 7];
|
|
t1[4] += (FIXED_A) in[hop + 8] * consts[hop + 8];
|
|
t1[4] += (FIXED_A) in[hop + 9] * consts[hop + 9];
|
|
t1[5] += (FIXED_A) in[hop + 10] * consts[hop + 10];
|
|
t1[5] += (FIXED_A) in[hop + 11] * consts[hop + 11];
|
|
t1[6] += (FIXED_A) in[hop + 12] * consts[hop + 12];
|
|
t1[6] += (FIXED_A) in[hop + 13] * consts[hop + 13];
|
|
t1[7] += (FIXED_A) in[hop + 14] * consts[hop + 14];
|
|
t1[7] += (FIXED_A) in[hop + 15] * consts[hop + 15];
|
|
}
|
|
|
|
/* scaling */
|
|
t2[0] = t1[0] >> SBC_PROTO_FIXED8_SCALE;
|
|
t2[1] = t1[1] >> SBC_PROTO_FIXED8_SCALE;
|
|
t2[2] = t1[2] >> SBC_PROTO_FIXED8_SCALE;
|
|
t2[3] = t1[3] >> SBC_PROTO_FIXED8_SCALE;
|
|
t2[4] = t1[4] >> SBC_PROTO_FIXED8_SCALE;
|
|
t2[5] = t1[5] >> SBC_PROTO_FIXED8_SCALE;
|
|
t2[6] = t1[6] >> SBC_PROTO_FIXED8_SCALE;
|
|
t2[7] = t1[7] >> SBC_PROTO_FIXED8_SCALE;
|
|
|
|
|
|
/* do the cos transform */
|
|
t1[0] = t1[1] = t1[2] = t1[3] = t1[4] = t1[5] = t1[6] = t1[7] = 0;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
t1[0] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 0];
|
|
t1[0] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 1];
|
|
t1[1] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 2];
|
|
t1[1] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 3];
|
|
t1[2] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 4];
|
|
t1[2] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 5];
|
|
t1[3] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 6];
|
|
t1[3] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 7];
|
|
t1[4] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 8];
|
|
t1[4] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 9];
|
|
t1[5] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 10];
|
|
t1[5] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 11];
|
|
t1[6] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 12];
|
|
t1[6] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 13];
|
|
t1[7] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 14];
|
|
t1[7] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 15];
|
|
}
|
|
|
|
for (i = 0; i < 8; i++)
|
|
out[i] = t1[i] >>
|
|
(SBC_COS_TABLE_FIXED8_SCALE - SCALE_OUT_BITS);
|
|
}
|
|
|
|
static inline void sbc_analyze_4b_4s_simd(int16_t *x,
|
|
int32_t *out, int out_stride)
|
|
{
|
|
/* Analyze blocks */
|
|
sbc_analyze_four_simd(x + 12, out, analysis_consts_fixed4_simd_odd);
|
|
out += out_stride;
|
|
sbc_analyze_four_simd(x + 8, out, analysis_consts_fixed4_simd_even);
|
|
out += out_stride;
|
|
sbc_analyze_four_simd(x + 4, out, analysis_consts_fixed4_simd_odd);
|
|
out += out_stride;
|
|
sbc_analyze_four_simd(x + 0, out, analysis_consts_fixed4_simd_even);
|
|
}
|
|
|
|
static inline void sbc_analyze_4b_8s_simd(int16_t *x,
|
|
int32_t *out, int out_stride)
|
|
{
|
|
/* Analyze blocks */
|
|
sbc_analyze_eight_simd(x + 24, out, analysis_consts_fixed8_simd_odd);
|
|
out += out_stride;
|
|
sbc_analyze_eight_simd(x + 16, out, analysis_consts_fixed8_simd_even);
|
|
out += out_stride;
|
|
sbc_analyze_eight_simd(x + 8, out, analysis_consts_fixed8_simd_odd);
|
|
out += out_stride;
|
|
sbc_analyze_eight_simd(x + 0, out, analysis_consts_fixed8_simd_even);
|
|
}
|
|
|
|
static inline int16_t unaligned16_be(const uint8_t *ptr)
|
|
{
|
|
return (int16_t) ((ptr[0] << 8) | ptr[1]);
|
|
}
|
|
|
|
static inline int16_t unaligned16_le(const uint8_t *ptr)
|
|
{
|
|
return (int16_t) (ptr[0] | (ptr[1] << 8));
|
|
}
|
|
|
|
/*
|
|
* Internal helper functions for input data processing. In order to get
|
|
* optimal performance, it is important to have "nsamples", "nchannels"
|
|
* and "big_endian" arguments used with this inline function as compile
|
|
* time constants.
|
|
*/
|
|
|
|
static SBC_ALWAYS_INLINE int sbc_encoder_process_input_s4_internal(
|
|
int position,
|
|
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
|
|
int nsamples, int nchannels, int big_endian)
|
|
{
|
|
/* handle X buffer wraparound */
|
|
if (position < nsamples) {
|
|
if (nchannels > 0)
|
|
memcpy(&X[0][SBC_X_BUFFER_SIZE - 40], &X[0][position],
|
|
36 * sizeof(int16_t));
|
|
if (nchannels > 1)
|
|
memcpy(&X[1][SBC_X_BUFFER_SIZE - 40], &X[1][position],
|
|
36 * sizeof(int16_t));
|
|
position = SBC_X_BUFFER_SIZE - 40;
|
|
}
|
|
|
|
#define PCM(i) (big_endian ? \
|
|
unaligned16_be(pcm + (i) * 2) : unaligned16_le(pcm + (i) * 2))
|
|
|
|
/* copy/permutate audio samples */
|
|
while ((nsamples -= 8) >= 0) {
|
|
position -= 8;
|
|
if (nchannels > 0) {
|
|
int16_t *x = &X[0][position];
|
|
x[0] = PCM(0 + 7 * nchannels);
|
|
x[1] = PCM(0 + 3 * nchannels);
|
|
x[2] = PCM(0 + 6 * nchannels);
|
|
x[3] = PCM(0 + 4 * nchannels);
|
|
x[4] = PCM(0 + 0 * nchannels);
|
|
x[5] = PCM(0 + 2 * nchannels);
|
|
x[6] = PCM(0 + 1 * nchannels);
|
|
x[7] = PCM(0 + 5 * nchannels);
|
|
}
|
|
if (nchannels > 1) {
|
|
int16_t *x = &X[1][position];
|
|
x[0] = PCM(1 + 7 * nchannels);
|
|
x[1] = PCM(1 + 3 * nchannels);
|
|
x[2] = PCM(1 + 6 * nchannels);
|
|
x[3] = PCM(1 + 4 * nchannels);
|
|
x[4] = PCM(1 + 0 * nchannels);
|
|
x[5] = PCM(1 + 2 * nchannels);
|
|
x[6] = PCM(1 + 1 * nchannels);
|
|
x[7] = PCM(1 + 5 * nchannels);
|
|
}
|
|
pcm += 16 * nchannels;
|
|
}
|
|
#undef PCM
|
|
|
|
return position;
|
|
}
|
|
|
|
static SBC_ALWAYS_INLINE int sbc_encoder_process_input_s8_internal(
|
|
int position,
|
|
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
|
|
int nsamples, int nchannels, int big_endian)
|
|
{
|
|
/* handle X buffer wraparound */
|
|
if (position < nsamples) {
|
|
if (nchannels > 0)
|
|
memcpy(&X[0][SBC_X_BUFFER_SIZE - 72], &X[0][position],
|
|
72 * sizeof(int16_t));
|
|
if (nchannels > 1)
|
|
memcpy(&X[1][SBC_X_BUFFER_SIZE - 72], &X[1][position],
|
|
72 * sizeof(int16_t));
|
|
position = SBC_X_BUFFER_SIZE - 72;
|
|
}
|
|
|
|
#define PCM(i) (big_endian ? \
|
|
unaligned16_be(pcm + (i) * 2) : unaligned16_le(pcm + (i) * 2))
|
|
|
|
/* copy/permutate audio samples */
|
|
while ((nsamples -= 16) >= 0) {
|
|
position -= 16;
|
|
if (nchannels > 0) {
|
|
int16_t *x = &X[0][position];
|
|
x[0] = PCM(0 + 15 * nchannels);
|
|
x[1] = PCM(0 + 7 * nchannels);
|
|
x[2] = PCM(0 + 14 * nchannels);
|
|
x[3] = PCM(0 + 8 * nchannels);
|
|
x[4] = PCM(0 + 13 * nchannels);
|
|
x[5] = PCM(0 + 9 * nchannels);
|
|
x[6] = PCM(0 + 12 * nchannels);
|
|
x[7] = PCM(0 + 10 * nchannels);
|
|
x[8] = PCM(0 + 11 * nchannels);
|
|
x[9] = PCM(0 + 3 * nchannels);
|
|
x[10] = PCM(0 + 6 * nchannels);
|
|
x[11] = PCM(0 + 0 * nchannels);
|
|
x[12] = PCM(0 + 5 * nchannels);
|
|
x[13] = PCM(0 + 1 * nchannels);
|
|
x[14] = PCM(0 + 4 * nchannels);
|
|
x[15] = PCM(0 + 2 * nchannels);
|
|
}
|
|
if (nchannels > 1) {
|
|
int16_t *x = &X[1][position];
|
|
x[0] = PCM(1 + 15 * nchannels);
|
|
x[1] = PCM(1 + 7 * nchannels);
|
|
x[2] = PCM(1 + 14 * nchannels);
|
|
x[3] = PCM(1 + 8 * nchannels);
|
|
x[4] = PCM(1 + 13 * nchannels);
|
|
x[5] = PCM(1 + 9 * nchannels);
|
|
x[6] = PCM(1 + 12 * nchannels);
|
|
x[7] = PCM(1 + 10 * nchannels);
|
|
x[8] = PCM(1 + 11 * nchannels);
|
|
x[9] = PCM(1 + 3 * nchannels);
|
|
x[10] = PCM(1 + 6 * nchannels);
|
|
x[11] = PCM(1 + 0 * nchannels);
|
|
x[12] = PCM(1 + 5 * nchannels);
|
|
x[13] = PCM(1 + 1 * nchannels);
|
|
x[14] = PCM(1 + 4 * nchannels);
|
|
x[15] = PCM(1 + 2 * nchannels);
|
|
}
|
|
pcm += 32 * nchannels;
|
|
}
|
|
#undef PCM
|
|
|
|
return position;
|
|
}
|
|
|
|
/*
|
|
* Input data processing functions. The data is endian converted if needed,
|
|
* channels are deintrleaved and audio samples are reordered for use in
|
|
* SIMD-friendly analysis filter function. The results are put into "X"
|
|
* array, getting appended to the previous data (or it is better to say
|
|
* prepended, as the buffer is filled from top to bottom). Old data is
|
|
* discarded when neededed, but availability of (10 * nrof_subbands)
|
|
* contiguous samples is always guaranteed for the input to the analysis
|
|
* filter. This is achieved by copying a sufficient part of old data
|
|
* to the top of the buffer on buffer wraparound.
|
|
*/
|
|
|
|
static int sbc_enc_process_input_4s_le(int position,
|
|
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
|
|
int nsamples, int nchannels)
|
|
{
|
|
if (nchannels > 1)
|
|
return sbc_encoder_process_input_s4_internal(
|
|
position, pcm, X, nsamples, 2, 0);
|
|
else
|
|
return sbc_encoder_process_input_s4_internal(
|
|
position, pcm, X, nsamples, 1, 0);
|
|
}
|
|
|
|
static int sbc_enc_process_input_4s_be(int position,
|
|
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
|
|
int nsamples, int nchannels)
|
|
{
|
|
if (nchannels > 1)
|
|
return sbc_encoder_process_input_s4_internal(
|
|
position, pcm, X, nsamples, 2, 1);
|
|
else
|
|
return sbc_encoder_process_input_s4_internal(
|
|
position, pcm, X, nsamples, 1, 1);
|
|
}
|
|
|
|
static int sbc_enc_process_input_8s_le(int position,
|
|
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
|
|
int nsamples, int nchannels)
|
|
{
|
|
if (nchannels > 1)
|
|
return sbc_encoder_process_input_s8_internal(
|
|
position, pcm, X, nsamples, 2, 0);
|
|
else
|
|
return sbc_encoder_process_input_s8_internal(
|
|
position, pcm, X, nsamples, 1, 0);
|
|
}
|
|
|
|
static int sbc_enc_process_input_8s_be(int position,
|
|
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
|
|
int nsamples, int nchannels)
|
|
{
|
|
if (nchannels > 1)
|
|
return sbc_encoder_process_input_s8_internal(
|
|
position, pcm, X, nsamples, 2, 1);
|
|
else
|
|
return sbc_encoder_process_input_s8_internal(
|
|
position, pcm, X, nsamples, 1, 1);
|
|
}
|
|
|
|
/* Supplementary function to count the number of leading zeros */
|
|
|
|
static inline int sbc_clz(uint32_t x)
|
|
{
|
|
#ifdef __GNUC__
|
|
return __builtin_clz(x);
|
|
#else
|
|
/* TODO: this should be replaced with something better if good
|
|
* performance is wanted when using compilers other than gcc */
|
|
int cnt = 0;
|
|
while (x) {
|
|
cnt++;
|
|
x >>= 1;
|
|
}
|
|
return 32 - cnt;
|
|
#endif
|
|
}
|
|
|
|
static void sbc_calc_scalefactors(
|
|
int32_t sb_sample_f[16][2][8],
|
|
uint32_t scale_factor[2][8],
|
|
int blocks, int channels, int subbands)
|
|
{
|
|
int ch, sb, blk;
|
|
for (ch = 0; ch < channels; ch++) {
|
|
for (sb = 0; sb < subbands; sb++) {
|
|
uint32_t x = 1 << SCALE_OUT_BITS;
|
|
for (blk = 0; blk < blocks; blk++) {
|
|
int32_t tmp = fabs(sb_sample_f[blk][ch][sb]);
|
|
if (tmp != 0)
|
|
x |= tmp - 1;
|
|
}
|
|
scale_factor[ch][sb] = (31 - SCALE_OUT_BITS) -
|
|
sbc_clz(x);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int sbc_calc_scalefactors_j(
|
|
int32_t sb_sample_f[16][2][8],
|
|
uint32_t scale_factor[2][8],
|
|
int blocks, int subbands)
|
|
{
|
|
int blk, joint = 0;
|
|
int32_t tmp0, tmp1;
|
|
uint32_t x, y;
|
|
|
|
/* last subband does not use joint stereo */
|
|
int sb = subbands - 1;
|
|
x = 1 << SCALE_OUT_BITS;
|
|
y = 1 << SCALE_OUT_BITS;
|
|
for (blk = 0; blk < blocks; blk++) {
|
|
tmp0 = fabs(sb_sample_f[blk][0][sb]);
|
|
tmp1 = fabs(sb_sample_f[blk][1][sb]);
|
|
if (tmp0 != 0)
|
|
x |= tmp0 - 1;
|
|
if (tmp1 != 0)
|
|
y |= tmp1 - 1;
|
|
}
|
|
scale_factor[0][sb] = (31 - SCALE_OUT_BITS) - sbc_clz(x);
|
|
scale_factor[1][sb] = (31 - SCALE_OUT_BITS) - sbc_clz(y);
|
|
|
|
/* the rest of subbands can use joint stereo */
|
|
while (--sb >= 0) {
|
|
int32_t sb_sample_j[16][2];
|
|
x = 1 << SCALE_OUT_BITS;
|
|
y = 1 << SCALE_OUT_BITS;
|
|
for (blk = 0; blk < blocks; blk++) {
|
|
tmp0 = sb_sample_f[blk][0][sb];
|
|
tmp1 = sb_sample_f[blk][1][sb];
|
|
sb_sample_j[blk][0] = ASR(tmp0, 1) + ASR(tmp1, 1);
|
|
sb_sample_j[blk][1] = ASR(tmp0, 1) - ASR(tmp1, 1);
|
|
tmp0 = fabs(tmp0);
|
|
tmp1 = fabs(tmp1);
|
|
if (tmp0 != 0)
|
|
x |= tmp0 - 1;
|
|
if (tmp1 != 0)
|
|
y |= tmp1 - 1;
|
|
}
|
|
scale_factor[0][sb] = (31 - SCALE_OUT_BITS) -
|
|
sbc_clz(x);
|
|
scale_factor[1][sb] = (31 - SCALE_OUT_BITS) -
|
|
sbc_clz(y);
|
|
x = 1 << SCALE_OUT_BITS;
|
|
y = 1 << SCALE_OUT_BITS;
|
|
for (blk = 0; blk < blocks; blk++) {
|
|
tmp0 = fabs(sb_sample_j[blk][0]);
|
|
tmp1 = fabs(sb_sample_j[blk][1]);
|
|
if (tmp0 != 0)
|
|
x |= tmp0 - 1;
|
|
if (tmp1 != 0)
|
|
y |= tmp1 - 1;
|
|
}
|
|
x = (31 - SCALE_OUT_BITS) - sbc_clz(x);
|
|
y = (31 - SCALE_OUT_BITS) - sbc_clz(y);
|
|
|
|
/* decide whether to use joint stereo for this subband */
|
|
if ((scale_factor[0][sb] + scale_factor[1][sb]) > x + y) {
|
|
joint |= 1 << (subbands - 1 - sb);
|
|
scale_factor[0][sb] = x;
|
|
scale_factor[1][sb] = y;
|
|
for (blk = 0; blk < blocks; blk++) {
|
|
sb_sample_f[blk][0][sb] = sb_sample_j[blk][0];
|
|
sb_sample_f[blk][1][sb] = sb_sample_j[blk][1];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* bitmask with the information about subbands using joint stereo */
|
|
return joint;
|
|
}
|
|
|
|
/*
|
|
* Detect CPU features and setup function pointers
|
|
*/
|
|
void sbc_init_primitives(struct sbc_encoder_state *state)
|
|
{
|
|
/* Default implementation for analyze functions */
|
|
state->sbc_analyze_4b_4s = sbc_analyze_4b_4s_simd;
|
|
state->sbc_analyze_4b_8s = sbc_analyze_4b_8s_simd;
|
|
|
|
/* Default implementation for input reordering / deinterleaving */
|
|
state->sbc_enc_process_input_4s_le = sbc_enc_process_input_4s_le;
|
|
state->sbc_enc_process_input_4s_be = sbc_enc_process_input_4s_be;
|
|
state->sbc_enc_process_input_8s_le = sbc_enc_process_input_8s_le;
|
|
state->sbc_enc_process_input_8s_be = sbc_enc_process_input_8s_be;
|
|
|
|
/* Default implementation for scale factors calculation */
|
|
state->sbc_calc_scalefactors = sbc_calc_scalefactors;
|
|
state->sbc_calc_scalefactors_j = sbc_calc_scalefactors_j;
|
|
state->implementation_info = "Generic C";
|
|
|
|
/* X86/AMD64 optimizations */
|
|
#ifdef SBC_BUILD_WITH_MMX_SUPPORT
|
|
sbc_init_primitives_mmx(state);
|
|
#endif
|
|
|
|
/* ARM optimizations */
|
|
#ifdef SBC_BUILD_WITH_ARMV6_SUPPORT
|
|
sbc_init_primitives_armv6(state);
|
|
#endif
|
|
#ifdef SBC_BUILD_WITH_IWMMXT_SUPPORT
|
|
sbc_init_primitives_iwmmxt(state);
|
|
#endif
|
|
#ifdef SBC_BUILD_WITH_NEON_SUPPORT
|
|
sbc_init_primitives_neon(state);
|
|
#endif
|
|
}
|