bluez/health/mcap_sync.c
Elvis Pfützenreuter bb096e674c Add more functions for new UUID handling
This patch adds more functions that are necessary to handle the new
bt_uuid_t type, and moves basic things like byte-swapping functions and
uint128_t type to bluetooth.h.
2011-03-15 10:42:50 +02:00

1016 lines
22 KiB
C

/*
*
* MCAP for BlueZ - Bluetooth protocol stack for Linux
*
* Copyright (C) 2010 GSyC/LibreSoft, Universidad Rey Juan Carlos.
* Copyright (C) 2010 Signove
*
* Authors:
* Santiago Carot-Nemesio <sancane at gmail.com>
* Jose Antonio Santos-Cadenas <santoscadenas at gmail.com>
* Elvis Pfützenreuter <epx at signove.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "btio.h"
#include <stdint.h>
#include <netinet/in.h>
#include <time.h>
#include <stdlib.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/l2cap.h>
#include "../src/adapter.h"
#include "../src/manager.h"
#include <sys/ioctl.h>
#include "config.h"
#include "log.h"
#include <bluetooth/bluetooth.h>
#include "mcap.h"
#include "mcap_lib.h"
#include "mcap_internal.h"
#define MCAP_BTCLOCK_HALF (MCAP_BTCLOCK_FIELD / 2)
#define CLK CLOCK_MONOTONIC
#define MCAP_CSP_ERROR g_quark_from_static_string("mcap-csp-error-quark")
#define MAX_RETRIES 10
#define SAMPLE_COUNT 20
struct mcap_csp {
uint64_t base_tmstamp; /* CSP base timestamp */
struct timespec base_time; /* CSP base time when timestamp set */
guint local_caps; /* CSP-Master: have got remote caps */
guint remote_caps; /* CSP-Slave: remote master got caps */
guint rem_req_acc; /* CSP-Slave: accuracy required by master */
guint ind_expected; /* CSP-Master: indication expected */
MCAPCtrl csp_req; /* CSP-Master: Request control flag */
guint ind_timer; /* CSP-Slave: indication timer */
guint set_timer; /* CSP-Slave: delayed set timer */
void *set_data; /* CSP-Slave: delayed set data */
void *csp_priv_data; /* CSP-Master: In-flight request data */
};
struct mcap_sync_cap_cbdata {
mcap_sync_cap_cb cb;
gpointer user_data;
};
struct mcap_sync_set_cbdata {
mcap_sync_set_cb cb;
gpointer user_data;
};
struct csp_caps {
int ts_acc; /* timestamp accuracy */
int ts_res; /* timestamp resolution */
int latency; /* Read BT clock latency */
int preempt_thresh; /* Preemption threshold for latency */
int syncleadtime_ms; /* SyncLeadTime in ms */
};
struct sync_set_data {
uint8_t update;
uint32_t sched_btclock;
uint64_t timestamp;
int ind_freq;
gboolean role;
};
#define hton64(x) ntoh64(x)
static gboolean csp_caps_initialized = FALSE;
struct csp_caps _caps;
static int send_sync_cmd(struct mcap_mcl *mcl, const void *buf, uint32_t size)
{
int sock;
if (mcl->cc == NULL)
return -1;
sock = g_io_channel_unix_get_fd(mcl->cc);
return mcap_send_data(sock, buf, size);
}
static int send_unsupported_cap_req(struct mcap_mcl *mcl)
{
mcap_md_sync_cap_rsp *cmd;
int sent;
cmd = g_new0(mcap_md_sync_cap_rsp, 1);
cmd->op = MCAP_MD_SYNC_CAP_RSP;
cmd->rc = MCAP_REQUEST_NOT_SUPPORTED;
sent = send_sync_cmd(mcl, cmd, sizeof(*cmd));
g_free(cmd);
return sent;
}
static int send_unsupported_set_req(struct mcap_mcl *mcl)
{
mcap_md_sync_set_rsp *cmd;
int sent;
cmd = g_new0(mcap_md_sync_set_rsp, 1);
cmd->op = MCAP_MD_SYNC_SET_RSP;
cmd->rc = MCAP_REQUEST_NOT_SUPPORTED;
sent = send_sync_cmd(mcl, cmd, sizeof(*cmd));
g_free(cmd);
return sent;
}
static void reset_tmstamp(struct mcap_csp *csp, struct timespec *base_time,
uint64_t new_tmstamp)
{
csp->base_tmstamp = new_tmstamp;
if (base_time)
csp->base_time = *base_time;
else
clock_gettime(CLK, &csp->base_time);
}
void mcap_sync_init(struct mcap_mcl *mcl)
{
if (!mcl->mi->csp_enabled) {
mcl->csp = NULL;
return;
}
mcl->csp = g_new0(struct mcap_csp, 1);
mcl->csp->rem_req_acc = 10000; /* safe divisor */
mcl->csp->set_data = NULL;
mcl->csp->csp_priv_data = NULL;
reset_tmstamp(mcl->csp, NULL, 0);
}
void mcap_sync_stop(struct mcap_mcl *mcl)
{
if (!mcl->csp)
return;
if (mcl->csp->ind_timer)
g_source_remove(mcl->csp->ind_timer);
if (mcl->csp->set_timer)
g_source_remove(mcl->csp->set_timer);
if (mcl->csp->set_data)
g_free(mcl->csp->set_data);
if (mcl->csp->csp_priv_data)
g_free(mcl->csp->csp_priv_data);
mcl->csp->ind_timer = 0;
mcl->csp->set_timer = 0;
mcl->csp->set_data = NULL;
mcl->csp->csp_priv_data = NULL;
g_free(mcl->csp);
mcl->csp = NULL;
}
static uint64_t time_us(struct timespec *tv)
{
return tv->tv_sec * 1000000 + tv->tv_nsec / 1000;
}
static int64_t bt2us(int bt)
{
return bt * 312.5;
}
static int bt2ms(int bt)
{
return bt * 312.5 / 1000;
}
static int btoffset(uint32_t btclk1, uint32_t btclk2)
{
int offset = btclk2 - btclk1;
if (offset <= -MCAP_BTCLOCK_HALF)
offset += MCAP_BTCLOCK_FIELD;
else if (offset > MCAP_BTCLOCK_HALF)
offset -= MCAP_BTCLOCK_FIELD;
return offset;
}
static int btdiff(uint32_t btclk1, uint32_t btclk2)
{
return btoffset(btclk1, btclk2);
}
static gboolean valid_btclock(uint32_t btclk)
{
return btclk <= MCAP_BTCLOCK_MAX;
}
/* This call may fail; either deal with retry or use read_btclock_retry */
static gboolean read_btclock(struct mcap_mcl *mcl, uint32_t *btclock,
uint16_t *btaccuracy)
{
int which = 1;
struct btd_adapter *adapter;
adapter = manager_find_adapter(&mcl->mi->src);
if (!adapter)
return FALSE;
if (btd_adapter_read_clock(adapter, &mcl->addr, which, 1000,
btclock, btaccuracy) < 0)
return FALSE;
return TRUE;
}
static gboolean read_btclock_retry(struct mcap_mcl *mcl, uint32_t *btclock,
uint16_t *btaccuracy)
{
int retries = 5;
while (--retries >= 0) {
if (read_btclock(mcl, btclock, btaccuracy))
return TRUE;
DBG("CSP: retrying to read bt clock...");
}
return FALSE;
}
static gboolean get_btrole(struct mcap_mcl *mcl)
{
int sock, flags;
socklen_t len;
if (mcl->cc == NULL)
return -1;
sock = g_io_channel_unix_get_fd(mcl->cc);
len = sizeof(flags);
if (getsockopt(sock, SOL_L2CAP, L2CAP_LM, &flags, &len))
DBG("CSP: could not read role");
return flags & L2CAP_LM_MASTER;
}
uint64_t mcap_get_timestamp(struct mcap_mcl *mcl,
struct timespec *given_time)
{
struct timespec now;
uint64_t tmstamp;
if (!mcl->csp)
return MCAP_TMSTAMP_DONTSET;
if (given_time)
now = *given_time;
else
clock_gettime(CLK, &now);
tmstamp = time_us(&now) - time_us(&mcl->csp->base_time)
+ mcl->csp->base_tmstamp;
return tmstamp;
}
uint32_t mcap_get_btclock(struct mcap_mcl *mcl)
{
uint32_t btclock;
uint16_t accuracy;
if (!mcl->csp)
return MCAP_BTCLOCK_IMMEDIATE;
if (!read_btclock_retry(mcl, &btclock, &accuracy))
btclock = 0xffffffff;
return btclock;
}
static gboolean initialize_caps(struct mcap_mcl *mcl)
{
struct timespec t1, t2;
int latencies[SAMPLE_COUNT];
int latency, avg, dev;
uint32_t btclock;
uint16_t btaccuracy;
int i;
int retries;
clock_getres(CLK, &t1);
_caps.ts_res = time_us(&t1);
if (_caps.ts_res < 1)
_caps.ts_res = 1;
_caps.ts_acc = 20; /* ppm, estimated */
/* A little exercise before measuing latency */
clock_gettime(CLK, &t1);
read_btclock_retry(mcl, &btclock, &btaccuracy);
/* Read clock a number of times and measure latency */
avg = 0;
i = 0;
retries = MAX_RETRIES;
while (i < SAMPLE_COUNT && retries > 0) {
clock_gettime(CLK, &t1);
if (!read_btclock(mcl, &btclock, &btaccuracy)) {
retries--;
continue;
}
clock_gettime(CLK, &t2);
latency = time_us(&t2) - time_us(&t1);
latencies[i] = latency;
avg += latency;
i++;
}
if (retries <= 0)
return FALSE;
/* Calculate average and deviation */
avg /= SAMPLE_COUNT;
dev = 0;
for (i = 0; i < SAMPLE_COUNT; ++i)
dev += abs(latencies[i] - avg);
dev /= SAMPLE_COUNT;
/* Calculate corrected average, without 'freak' latencies */
latency = 0;
for (i = 0; i < SAMPLE_COUNT; ++i) {
if (latencies[i] > (avg + dev * 6))
latency += avg;
else
latency += latencies[i];
}
latency /= SAMPLE_COUNT;
_caps.latency = latency;
_caps.preempt_thresh = latency * 4;
_caps.syncleadtime_ms = latency * 50 / 1000;
csp_caps_initialized = TRUE;
return TRUE;
}
static struct csp_caps *caps(struct mcap_mcl *mcl)
{
if (!csp_caps_initialized)
if (!initialize_caps(mcl)) {
/* Temporary failure in reading BT clock */
return NULL;
}
return &_caps;
}
static int send_sync_cap_rsp(struct mcap_mcl *mcl, uint8_t rspcode,
uint8_t btclockres, uint16_t synclead,
uint16_t tmstampres, uint16_t tmstampacc)
{
mcap_md_sync_cap_rsp *rsp;
int sent;
rsp = g_new0(mcap_md_sync_cap_rsp, 1);
rsp->op = MCAP_MD_SYNC_CAP_RSP;
rsp->rc = rspcode;
rsp->btclock = btclockres;
rsp->sltime = htons(synclead);
rsp->timestnr = htons(tmstampres);
rsp->timestna = htons(tmstampacc);
sent = send_sync_cmd(mcl, rsp, sizeof(*rsp));
g_free(rsp);
return sent;
}
static void proc_sync_cap_req(struct mcap_mcl *mcl, uint8_t *cmd, uint32_t len)
{
mcap_md_sync_cap_req *req;
uint16_t required_accuracy;
uint16_t our_accuracy;
uint32_t btclock;
uint16_t btres;
if (len != sizeof(mcap_md_sync_cap_req)) {
send_sync_cap_rsp(mcl, MCAP_INVALID_PARAM_VALUE,
0, 0, 0, 0);
return;
}
if (!caps(mcl)) {
send_sync_cap_rsp(mcl, MCAP_RESOURCE_UNAVAILABLE,
0, 0, 0, 0);
return;
}
req = (mcap_md_sync_cap_req *) cmd;
required_accuracy = ntohs(req->timest);
our_accuracy = caps(mcl)->ts_acc;
if (required_accuracy < our_accuracy || required_accuracy < 1) {
send_sync_cap_rsp(mcl, MCAP_RESOURCE_UNAVAILABLE,
0, 0, 0, 0);
return;
}
if (!read_btclock_retry(mcl, &btclock, &btres)) {
send_sync_cap_rsp(mcl, MCAP_RESOURCE_UNAVAILABLE,
0, 0, 0, 0);
return;
}
mcl->csp->remote_caps = 1;
mcl->csp->rem_req_acc = required_accuracy;
send_sync_cap_rsp(mcl, MCAP_SUCCESS, btres,
caps(mcl)->syncleadtime_ms,
caps(mcl)->ts_res, our_accuracy);
}
static int send_sync_set_rsp(struct mcap_mcl *mcl, uint8_t rspcode,
uint32_t btclock, uint64_t timestamp,
uint16_t tmstampres)
{
mcap_md_sync_set_rsp *rsp;
int sent;
rsp = g_new0(mcap_md_sync_set_rsp, 1);
rsp->op = MCAP_MD_SYNC_SET_RSP;
rsp->rc = rspcode;
rsp->btclock = htonl(btclock);
rsp->timestst = hton64(timestamp);
rsp->timestsa = htons(tmstampres);
sent = send_sync_cmd(mcl, rsp, sizeof(*rsp));
g_free(rsp);
return sent;
}
static gboolean get_all_clocks(struct mcap_mcl *mcl, uint32_t *btclock,
struct timespec *base_time,
uint64_t *timestamp)
{
int latency;
int retry = 5;
uint16_t btres;
struct timespec t0;
if (!caps(mcl))
return FALSE;
latency = caps(mcl)->preempt_thresh + 1;
while (latency > caps(mcl)->preempt_thresh && --retry >= 0) {
clock_gettime(CLK, &t0);
if (!read_btclock(mcl, btclock, &btres))
continue;
clock_gettime(CLK, base_time);
/* Tries to detect preemption between clock_gettime
* and read_btclock by measuring transaction time
*/
latency = time_us(base_time) - time_us(&t0);
}
*timestamp = mcap_get_timestamp(mcl, base_time);
return TRUE;
}
static gboolean sync_send_indication(gpointer user_data)
{
struct mcap_mcl *mcl;
mcap_md_sync_info_ind *cmd;
uint32_t btclock;
uint64_t tmstamp;
struct timespec base_time;
int sent;
if (!user_data)
return FALSE;
mcl = user_data;
if (!caps(mcl))
return FALSE;
if (!get_all_clocks(mcl, &btclock, &base_time, &tmstamp))
return FALSE;
cmd = g_new0(mcap_md_sync_info_ind, 1);
cmd->op = MCAP_MD_SYNC_INFO_IND;
cmd->btclock = htonl(btclock);
cmd->timestst = hton64(tmstamp);
cmd->timestsa = htons(caps(mcl)->latency);
sent = send_sync_cmd(mcl, cmd, sizeof(*cmd));
g_free(cmd);
return !sent;
}
static gboolean proc_sync_set_req_phase2(gpointer user_data)
{
struct mcap_mcl *mcl;
struct sync_set_data *data;
uint8_t update;
uint32_t sched_btclock;
uint64_t new_tmstamp;
int ind_freq;
int role;
uint32_t btclock;
uint64_t tmstamp;
struct timespec base_time;
uint16_t tmstampacc;
gboolean reset;
int delay;
if (!user_data)
return FALSE;
mcl = user_data;
if (!mcl->csp->set_data)
return FALSE;
data = mcl->csp->set_data;
update = data->update;
sched_btclock = data->sched_btclock;
new_tmstamp = data->timestamp;
ind_freq = data->ind_freq;
role = data->role;
if (!caps(mcl)) {
send_sync_set_rsp(mcl, MCAP_UNSPECIFIED_ERROR, 0, 0, 0);
return FALSE;
}
if (!get_all_clocks(mcl, &btclock, &base_time, &tmstamp)) {
send_sync_set_rsp(mcl, MCAP_UNSPECIFIED_ERROR, 0, 0, 0);
return FALSE;
}
if (get_btrole(mcl) != role) {
send_sync_set_rsp(mcl, MCAP_INVALID_OPERATION, 0, 0, 0);
return FALSE;
}
reset = (new_tmstamp != MCAP_TMSTAMP_DONTSET);
if (reset) {
if (sched_btclock != MCAP_BTCLOCK_IMMEDIATE) {
delay = bt2us(btdiff(sched_btclock, btclock));
if (delay >= 0 || ((new_tmstamp - delay) > 0)) {
new_tmstamp += delay;
DBG("CSP: reset w/ delay %dus, compensated",
delay);
} else
DBG("CSP: reset w/ delay %dus, uncompensated",
delay);
}
reset_tmstamp(mcl->csp, &base_time, new_tmstamp);
tmstamp = new_tmstamp;
}
tmstampacc = caps(mcl)->latency + caps(mcl)->ts_acc;
if (mcl->csp->ind_timer) {
g_source_remove(mcl->csp->ind_timer);
mcl->csp->ind_timer = 0;
}
if (update) {
int when = ind_freq + caps(mcl)->syncleadtime_ms;
mcl->csp->ind_timer = g_timeout_add(when,
sync_send_indication,
mcl);
}
send_sync_set_rsp(mcl, MCAP_SUCCESS, btclock, tmstamp, tmstampacc);
/* First indication after set is immediate */
if (update)
sync_send_indication(mcl);
return FALSE;
}
static void proc_sync_set_req(struct mcap_mcl *mcl, uint8_t *cmd, uint32_t len)
{
mcap_md_sync_set_req *req;
uint32_t sched_btclock, cur_btclock;
uint16_t btres;
uint8_t update;
uint64_t timestamp;
struct sync_set_data *set_data;
int phase2_delay, ind_freq, when;
if (len != sizeof(mcap_md_sync_set_req)) {
send_sync_set_rsp(mcl, MCAP_INVALID_PARAM_VALUE, 0, 0, 0);
return;
}
req = (mcap_md_sync_set_req *) cmd;
sched_btclock = ntohl(req->btclock);
update = req->timestui;
timestamp = ntoh64(req->timestst);
if (sched_btclock != MCAP_BTCLOCK_IMMEDIATE &&
!valid_btclock(sched_btclock)) {
send_sync_set_rsp(mcl, MCAP_INVALID_PARAM_VALUE, 0, 0, 0);
return;
}
if (update > 1) {
send_sync_set_rsp(mcl, MCAP_INVALID_PARAM_VALUE, 0, 0, 0);
return;
}
if (!mcl->csp->remote_caps) {
/* Remote side did not ask our capabilities yet */
send_sync_set_rsp(mcl, MCAP_INVALID_PARAM_VALUE, 0, 0, 0);
return;
}
if (!caps(mcl)) {
send_sync_set_rsp(mcl, MCAP_UNSPECIFIED_ERROR, 0, 0, 0);
return;
}
if (!read_btclock_retry(mcl, &cur_btclock, &btres)) {
send_sync_set_rsp(mcl, MCAP_UNSPECIFIED_ERROR, 0, 0, 0);
return;
}
if (sched_btclock == MCAP_BTCLOCK_IMMEDIATE)
phase2_delay = 0;
else {
phase2_delay = btdiff(cur_btclock, sched_btclock);
if (phase2_delay < 0) {
/* can not reset in the past tense */
send_sync_set_rsp(mcl, MCAP_INVALID_PARAM_VALUE,
0, 0, 0);
return;
}
/* Convert to miliseconds */
phase2_delay = bt2ms(phase2_delay);
if (phase2_delay > 61*1000) {
/* More than 60 seconds in the future */
send_sync_set_rsp(mcl, MCAP_INVALID_PARAM_VALUE,
0, 0, 0);
return;
} else if (phase2_delay < caps(mcl)->latency / 1000) {
/* Too fast for us to do in time */
send_sync_set_rsp(mcl, MCAP_INVALID_PARAM_VALUE,
0, 0, 0);
return;
}
}
if (update) {
/* Indication frequency: required accuracy divided by ours */
/* Converted to milisseconds */
ind_freq = (1000 * mcl->csp->rem_req_acc) / caps(mcl)->ts_acc;
if (ind_freq < MAX(caps(mcl)->latency * 2 / 1000, 100)) {
/* Too frequent, we can't handle */
send_sync_set_rsp(mcl, MCAP_INVALID_PARAM_VALUE,
0, 0, 0);
return;
}
DBG("CSP: indication every %dms", ind_freq);
} else
ind_freq = 0;
if (mcl->csp->ind_timer) {
/* Old indications are no longer sent */
g_source_remove(mcl->csp->ind_timer);
mcl->csp->ind_timer = 0;
}
if (!mcl->csp->set_data)
mcl->csp->set_data = g_new0(struct sync_set_data, 1);
set_data = (struct sync_set_data *) mcl->csp->set_data;
set_data->update = update;
set_data->sched_btclock = sched_btclock;
set_data->timestamp = timestamp;
set_data->ind_freq = ind_freq;
set_data->role = get_btrole(mcl);
/* TODO is there some way to schedule a call based directly on
* a BT clock value, instead of this estimation that uses
* the SO clock? */
if (phase2_delay > 0) {
when = phase2_delay + caps(mcl)->syncleadtime_ms;
mcl->csp->set_timer = g_timeout_add(when,
proc_sync_set_req_phase2,
mcl);
} else
proc_sync_set_req_phase2(mcl);
/* First indication is immediate */
if (update)
sync_send_indication(mcl);
}
static void proc_sync_cap_rsp(struct mcap_mcl *mcl, uint8_t *cmd, uint32_t len)
{
mcap_md_sync_cap_rsp *rsp;
uint8_t mcap_err;
uint8_t btclockres;
uint16_t synclead;
uint16_t tmstampres;
uint16_t tmstampacc;
struct mcap_sync_cap_cbdata *cbdata;
mcap_sync_cap_cb cb;
gpointer user_data;
if (mcl->csp->csp_req != MCAP_MD_SYNC_CAP_REQ) {
DBG("CSP: got unexpected cap respose");
return;
}
if (!mcl->csp->csp_priv_data) {
DBG("CSP: no priv data for cap respose");
return;
}
cbdata = mcl->csp->csp_priv_data;
cb = cbdata->cb;
user_data = cbdata->user_data;
g_free(cbdata);
mcl->csp->csp_priv_data = NULL;
mcl->csp->csp_req = 0;
if (len != sizeof(mcap_md_sync_cap_rsp)) {
DBG("CSP: got corrupted cap respose");
return;
}
rsp = (mcap_md_sync_cap_rsp *) cmd;
mcap_err = rsp->rc;
btclockres = rsp->btclock;
synclead = ntohs(rsp->sltime);
tmstampres = ntohs(rsp->timestnr);
tmstampacc = ntohs(rsp->timestna);
if (!mcap_err)
mcl->csp->local_caps = TRUE;
cb(mcl, mcap_err, btclockres, synclead, tmstampres, tmstampacc, NULL,
user_data);
}
static void proc_sync_set_rsp(struct mcap_mcl *mcl, uint8_t *cmd, uint32_t len)
{
mcap_md_sync_set_rsp *rsp;
uint8_t mcap_err;
uint32_t btclock;
uint64_t timestamp;
uint16_t accuracy;
struct mcap_sync_set_cbdata *cbdata;
mcap_sync_set_cb cb;
gpointer user_data;
if (mcl->csp->csp_req != MCAP_MD_SYNC_SET_REQ) {
DBG("CSP: got unexpected set respose");
return;
}
if (!mcl->csp->csp_priv_data) {
DBG("CSP: no priv data for set respose");
return;
}
cbdata = mcl->csp->csp_priv_data;
cb = cbdata->cb;
user_data = cbdata->user_data;
g_free(cbdata);
mcl->csp->csp_priv_data = NULL;
mcl->csp->csp_req = 0;
if (len != sizeof(mcap_md_sync_set_rsp)) {
DBG("CSP: got corrupted set respose");
return;
}
rsp = (mcap_md_sync_set_rsp *) cmd;
mcap_err = rsp->rc;
btclock = ntohl(rsp->btclock);
timestamp = ntoh64(rsp->timestst);
accuracy = ntohs(rsp->timestsa);
if (!mcap_err && !valid_btclock(btclock))
mcap_err = MCAP_ERROR_INVALID_ARGS;
cb(mcl, mcap_err, btclock, timestamp, accuracy, NULL, user_data);
}
static void proc_sync_info_ind(struct mcap_mcl *mcl, uint8_t *cmd, uint32_t len)
{
mcap_md_sync_info_ind *req;
struct sync_info_ind_data data;
uint32_t btclock;
if (!mcl->csp->ind_expected) {
DBG("CSP: received unexpected info indication");
return;
}
if (len != sizeof(mcap_md_sync_info_ind))
return;
req = (mcap_md_sync_info_ind *) cmd;
btclock = ntohl(req->btclock);
if (!valid_btclock(btclock))
return;
data.btclock = btclock;
data.timestamp = ntoh64(req->timestst);
data.accuracy = ntohs(req->timestsa);
if (mcl->mi->mcl_sync_infoind_cb)
mcl->mi->mcl_sync_infoind_cb(mcl, &data);
}
void proc_sync_cmd(struct mcap_mcl *mcl, uint8_t *cmd, uint32_t len)
{
if (!mcl->mi->csp_enabled || !mcl->csp) {
switch (cmd[0]) {
case MCAP_MD_SYNC_CAP_REQ:
send_unsupported_cap_req(mcl);
break;
case MCAP_MD_SYNC_SET_REQ:
send_unsupported_set_req(mcl);
break;
}
return;
}
switch (cmd[0]) {
case MCAP_MD_SYNC_CAP_REQ:
proc_sync_cap_req(mcl, cmd, len);
break;
case MCAP_MD_SYNC_CAP_RSP:
proc_sync_cap_rsp(mcl, cmd, len);
break;
case MCAP_MD_SYNC_SET_REQ:
proc_sync_set_req(mcl, cmd, len);
break;
case MCAP_MD_SYNC_SET_RSP:
proc_sync_set_rsp(mcl, cmd, len);
break;
case MCAP_MD_SYNC_INFO_IND:
proc_sync_info_ind(mcl, cmd, len);
break;
}
}
void mcap_sync_cap_req(struct mcap_mcl *mcl, uint16_t reqacc,
mcap_sync_cap_cb cb, gpointer user_data,
GError **err)
{
struct mcap_sync_cap_cbdata *cbdata;
mcap_md_sync_cap_req *cmd;
if (!mcl->mi->csp_enabled || !mcl->csp) {
g_set_error(err,
MCAP_CSP_ERROR,
MCAP_ERROR_RESOURCE_UNAVAILABLE,
"CSP not enabled for the instance");
return;
}
if (mcl->csp->csp_req) {
g_set_error(err,
MCAP_CSP_ERROR,
MCAP_ERROR_RESOURCE_UNAVAILABLE,
"Pending CSP request");
return;
}
mcl->csp->csp_req = MCAP_MD_SYNC_CAP_REQ;
cmd = g_new0(mcap_md_sync_cap_req, 1);
cmd->op = MCAP_MD_SYNC_CAP_REQ;
cmd->timest = htons(reqacc);
cbdata = g_new0(struct mcap_sync_cap_cbdata, 1);
cbdata->cb = cb;
cbdata->user_data = user_data;
mcl->csp->csp_priv_data = cbdata;
send_sync_cmd(mcl, cmd, sizeof(*cmd));
g_free(cmd);
}
void mcap_sync_set_req(struct mcap_mcl *mcl, uint8_t update, uint32_t btclock,
uint64_t timestamp, mcap_sync_set_cb cb,
gpointer user_data, GError **err)
{
mcap_md_sync_set_req *cmd;
struct mcap_sync_set_cbdata *cbdata;
if (!mcl->mi->csp_enabled || !mcl->csp) {
g_set_error(err,
MCAP_CSP_ERROR,
MCAP_ERROR_RESOURCE_UNAVAILABLE,
"CSP not enabled for the instance");
return;
}
if (!mcl->csp->local_caps) {
g_set_error(err,
MCAP_CSP_ERROR,
MCAP_ERROR_RESOURCE_UNAVAILABLE,
"Did not get CSP caps from slave yet");
return;
}
if (mcl->csp->csp_req) {
g_set_error(err,
MCAP_CSP_ERROR,
MCAP_ERROR_RESOURCE_UNAVAILABLE,
"Pending CSP request");
return;
}
mcl->csp->csp_req = MCAP_MD_SYNC_SET_REQ;
cmd = g_new0(mcap_md_sync_set_req, 1);
cmd->op = MCAP_MD_SYNC_SET_REQ;
cmd->timestui = update;
cmd->btclock = htonl(btclock);
cmd->timestst = hton64(timestamp);
mcl->csp->ind_expected = update;
cbdata = g_new0(struct mcap_sync_set_cbdata, 1);
cbdata->cb = cb;
cbdata->user_data = user_data;
mcl->csp->csp_priv_data = cbdata;
send_sync_cmd(mcl, cmd, sizeof(*cmd));
g_free(cmd);
}
void mcap_enable_csp(struct mcap_instance *mi)
{
mi->csp_enabled = TRUE;
}
void mcap_disable_csp(struct mcap_instance *mi)
{
mi->csp_enabled = FALSE;
}