mirror of
https://git.kernel.org/pub/scm/bluetooth/bluez.git
synced 2024-11-25 13:14:14 +08:00
bb096e674c
This patch adds more functions that are necessary to handle the new bt_uuid_t type, and moves basic things like byte-swapping functions and uint128_t type to bluetooth.h.
1016 lines
22 KiB
C
1016 lines
22 KiB
C
/*
|
|
*
|
|
* MCAP for BlueZ - Bluetooth protocol stack for Linux
|
|
*
|
|
* Copyright (C) 2010 GSyC/LibreSoft, Universidad Rey Juan Carlos.
|
|
* Copyright (C) 2010 Signove
|
|
*
|
|
* Authors:
|
|
* Santiago Carot-Nemesio <sancane at gmail.com>
|
|
* Jose Antonio Santos-Cadenas <santoscadenas at gmail.com>
|
|
* Elvis Pfützenreuter <epx at signove.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
#include "btio.h"
|
|
#include <stdint.h>
|
|
#include <netinet/in.h>
|
|
#include <time.h>
|
|
#include <stdlib.h>
|
|
#include <bluetooth/bluetooth.h>
|
|
#include <bluetooth/l2cap.h>
|
|
#include "../src/adapter.h"
|
|
#include "../src/manager.h"
|
|
#include <sys/ioctl.h>
|
|
|
|
#include "config.h"
|
|
#include "log.h"
|
|
|
|
#include <bluetooth/bluetooth.h>
|
|
#include "mcap.h"
|
|
#include "mcap_lib.h"
|
|
#include "mcap_internal.h"
|
|
|
|
#define MCAP_BTCLOCK_HALF (MCAP_BTCLOCK_FIELD / 2)
|
|
#define CLK CLOCK_MONOTONIC
|
|
|
|
#define MCAP_CSP_ERROR g_quark_from_static_string("mcap-csp-error-quark")
|
|
#define MAX_RETRIES 10
|
|
#define SAMPLE_COUNT 20
|
|
|
|
struct mcap_csp {
|
|
uint64_t base_tmstamp; /* CSP base timestamp */
|
|
struct timespec base_time; /* CSP base time when timestamp set */
|
|
guint local_caps; /* CSP-Master: have got remote caps */
|
|
guint remote_caps; /* CSP-Slave: remote master got caps */
|
|
guint rem_req_acc; /* CSP-Slave: accuracy required by master */
|
|
guint ind_expected; /* CSP-Master: indication expected */
|
|
MCAPCtrl csp_req; /* CSP-Master: Request control flag */
|
|
guint ind_timer; /* CSP-Slave: indication timer */
|
|
guint set_timer; /* CSP-Slave: delayed set timer */
|
|
void *set_data; /* CSP-Slave: delayed set data */
|
|
void *csp_priv_data; /* CSP-Master: In-flight request data */
|
|
};
|
|
|
|
struct mcap_sync_cap_cbdata {
|
|
mcap_sync_cap_cb cb;
|
|
gpointer user_data;
|
|
};
|
|
|
|
struct mcap_sync_set_cbdata {
|
|
mcap_sync_set_cb cb;
|
|
gpointer user_data;
|
|
};
|
|
|
|
struct csp_caps {
|
|
int ts_acc; /* timestamp accuracy */
|
|
int ts_res; /* timestamp resolution */
|
|
int latency; /* Read BT clock latency */
|
|
int preempt_thresh; /* Preemption threshold for latency */
|
|
int syncleadtime_ms; /* SyncLeadTime in ms */
|
|
};
|
|
|
|
struct sync_set_data {
|
|
uint8_t update;
|
|
uint32_t sched_btclock;
|
|
uint64_t timestamp;
|
|
int ind_freq;
|
|
gboolean role;
|
|
};
|
|
|
|
#define hton64(x) ntoh64(x)
|
|
|
|
static gboolean csp_caps_initialized = FALSE;
|
|
struct csp_caps _caps;
|
|
|
|
static int send_sync_cmd(struct mcap_mcl *mcl, const void *buf, uint32_t size)
|
|
{
|
|
int sock;
|
|
|
|
if (mcl->cc == NULL)
|
|
return -1;
|
|
|
|
sock = g_io_channel_unix_get_fd(mcl->cc);
|
|
return mcap_send_data(sock, buf, size);
|
|
}
|
|
|
|
static int send_unsupported_cap_req(struct mcap_mcl *mcl)
|
|
{
|
|
mcap_md_sync_cap_rsp *cmd;
|
|
int sent;
|
|
|
|
cmd = g_new0(mcap_md_sync_cap_rsp, 1);
|
|
cmd->op = MCAP_MD_SYNC_CAP_RSP;
|
|
cmd->rc = MCAP_REQUEST_NOT_SUPPORTED;
|
|
|
|
sent = send_sync_cmd(mcl, cmd, sizeof(*cmd));
|
|
g_free(cmd);
|
|
|
|
return sent;
|
|
}
|
|
|
|
static int send_unsupported_set_req(struct mcap_mcl *mcl)
|
|
{
|
|
mcap_md_sync_set_rsp *cmd;
|
|
int sent;
|
|
|
|
cmd = g_new0(mcap_md_sync_set_rsp, 1);
|
|
cmd->op = MCAP_MD_SYNC_SET_RSP;
|
|
cmd->rc = MCAP_REQUEST_NOT_SUPPORTED;
|
|
|
|
sent = send_sync_cmd(mcl, cmd, sizeof(*cmd));
|
|
g_free(cmd);
|
|
|
|
return sent;
|
|
}
|
|
|
|
static void reset_tmstamp(struct mcap_csp *csp, struct timespec *base_time,
|
|
uint64_t new_tmstamp)
|
|
{
|
|
csp->base_tmstamp = new_tmstamp;
|
|
if (base_time)
|
|
csp->base_time = *base_time;
|
|
else
|
|
clock_gettime(CLK, &csp->base_time);
|
|
}
|
|
|
|
void mcap_sync_init(struct mcap_mcl *mcl)
|
|
{
|
|
if (!mcl->mi->csp_enabled) {
|
|
mcl->csp = NULL;
|
|
return;
|
|
}
|
|
|
|
mcl->csp = g_new0(struct mcap_csp, 1);
|
|
|
|
mcl->csp->rem_req_acc = 10000; /* safe divisor */
|
|
mcl->csp->set_data = NULL;
|
|
mcl->csp->csp_priv_data = NULL;
|
|
|
|
reset_tmstamp(mcl->csp, NULL, 0);
|
|
}
|
|
|
|
void mcap_sync_stop(struct mcap_mcl *mcl)
|
|
{
|
|
if (!mcl->csp)
|
|
return;
|
|
|
|
if (mcl->csp->ind_timer)
|
|
g_source_remove(mcl->csp->ind_timer);
|
|
|
|
if (mcl->csp->set_timer)
|
|
g_source_remove(mcl->csp->set_timer);
|
|
|
|
if (mcl->csp->set_data)
|
|
g_free(mcl->csp->set_data);
|
|
|
|
if (mcl->csp->csp_priv_data)
|
|
g_free(mcl->csp->csp_priv_data);
|
|
|
|
mcl->csp->ind_timer = 0;
|
|
mcl->csp->set_timer = 0;
|
|
mcl->csp->set_data = NULL;
|
|
mcl->csp->csp_priv_data = NULL;
|
|
|
|
g_free(mcl->csp);
|
|
mcl->csp = NULL;
|
|
}
|
|
|
|
static uint64_t time_us(struct timespec *tv)
|
|
{
|
|
return tv->tv_sec * 1000000 + tv->tv_nsec / 1000;
|
|
}
|
|
|
|
static int64_t bt2us(int bt)
|
|
{
|
|
return bt * 312.5;
|
|
}
|
|
|
|
static int bt2ms(int bt)
|
|
{
|
|
return bt * 312.5 / 1000;
|
|
}
|
|
|
|
static int btoffset(uint32_t btclk1, uint32_t btclk2)
|
|
{
|
|
int offset = btclk2 - btclk1;
|
|
|
|
if (offset <= -MCAP_BTCLOCK_HALF)
|
|
offset += MCAP_BTCLOCK_FIELD;
|
|
else if (offset > MCAP_BTCLOCK_HALF)
|
|
offset -= MCAP_BTCLOCK_FIELD;
|
|
|
|
return offset;
|
|
}
|
|
|
|
static int btdiff(uint32_t btclk1, uint32_t btclk2)
|
|
{
|
|
return btoffset(btclk1, btclk2);
|
|
}
|
|
|
|
static gboolean valid_btclock(uint32_t btclk)
|
|
{
|
|
return btclk <= MCAP_BTCLOCK_MAX;
|
|
}
|
|
|
|
/* This call may fail; either deal with retry or use read_btclock_retry */
|
|
static gboolean read_btclock(struct mcap_mcl *mcl, uint32_t *btclock,
|
|
uint16_t *btaccuracy)
|
|
{
|
|
int which = 1;
|
|
struct btd_adapter *adapter;
|
|
|
|
adapter = manager_find_adapter(&mcl->mi->src);
|
|
|
|
if (!adapter)
|
|
return FALSE;
|
|
|
|
if (btd_adapter_read_clock(adapter, &mcl->addr, which, 1000,
|
|
btclock, btaccuracy) < 0)
|
|
return FALSE;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static gboolean read_btclock_retry(struct mcap_mcl *mcl, uint32_t *btclock,
|
|
uint16_t *btaccuracy)
|
|
{
|
|
int retries = 5;
|
|
|
|
while (--retries >= 0) {
|
|
if (read_btclock(mcl, btclock, btaccuracy))
|
|
return TRUE;
|
|
DBG("CSP: retrying to read bt clock...");
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
static gboolean get_btrole(struct mcap_mcl *mcl)
|
|
{
|
|
int sock, flags;
|
|
socklen_t len;
|
|
|
|
if (mcl->cc == NULL)
|
|
return -1;
|
|
|
|
sock = g_io_channel_unix_get_fd(mcl->cc);
|
|
len = sizeof(flags);
|
|
|
|
if (getsockopt(sock, SOL_L2CAP, L2CAP_LM, &flags, &len))
|
|
DBG("CSP: could not read role");
|
|
|
|
return flags & L2CAP_LM_MASTER;
|
|
}
|
|
|
|
uint64_t mcap_get_timestamp(struct mcap_mcl *mcl,
|
|
struct timespec *given_time)
|
|
{
|
|
struct timespec now;
|
|
uint64_t tmstamp;
|
|
|
|
if (!mcl->csp)
|
|
return MCAP_TMSTAMP_DONTSET;
|
|
|
|
if (given_time)
|
|
now = *given_time;
|
|
else
|
|
clock_gettime(CLK, &now);
|
|
|
|
tmstamp = time_us(&now) - time_us(&mcl->csp->base_time)
|
|
+ mcl->csp->base_tmstamp;
|
|
|
|
return tmstamp;
|
|
}
|
|
|
|
uint32_t mcap_get_btclock(struct mcap_mcl *mcl)
|
|
{
|
|
uint32_t btclock;
|
|
uint16_t accuracy;
|
|
|
|
if (!mcl->csp)
|
|
return MCAP_BTCLOCK_IMMEDIATE;
|
|
|
|
if (!read_btclock_retry(mcl, &btclock, &accuracy))
|
|
btclock = 0xffffffff;
|
|
|
|
return btclock;
|
|
}
|
|
|
|
static gboolean initialize_caps(struct mcap_mcl *mcl)
|
|
{
|
|
struct timespec t1, t2;
|
|
int latencies[SAMPLE_COUNT];
|
|
int latency, avg, dev;
|
|
uint32_t btclock;
|
|
uint16_t btaccuracy;
|
|
int i;
|
|
int retries;
|
|
|
|
clock_getres(CLK, &t1);
|
|
|
|
_caps.ts_res = time_us(&t1);
|
|
if (_caps.ts_res < 1)
|
|
_caps.ts_res = 1;
|
|
|
|
_caps.ts_acc = 20; /* ppm, estimated */
|
|
|
|
/* A little exercise before measuing latency */
|
|
clock_gettime(CLK, &t1);
|
|
read_btclock_retry(mcl, &btclock, &btaccuracy);
|
|
|
|
/* Read clock a number of times and measure latency */
|
|
avg = 0;
|
|
i = 0;
|
|
retries = MAX_RETRIES;
|
|
while (i < SAMPLE_COUNT && retries > 0) {
|
|
clock_gettime(CLK, &t1);
|
|
if (!read_btclock(mcl, &btclock, &btaccuracy)) {
|
|
retries--;
|
|
continue;
|
|
}
|
|
clock_gettime(CLK, &t2);
|
|
|
|
latency = time_us(&t2) - time_us(&t1);
|
|
latencies[i] = latency;
|
|
avg += latency;
|
|
i++;
|
|
}
|
|
|
|
if (retries <= 0)
|
|
return FALSE;
|
|
|
|
/* Calculate average and deviation */
|
|
avg /= SAMPLE_COUNT;
|
|
dev = 0;
|
|
for (i = 0; i < SAMPLE_COUNT; ++i)
|
|
dev += abs(latencies[i] - avg);
|
|
dev /= SAMPLE_COUNT;
|
|
|
|
/* Calculate corrected average, without 'freak' latencies */
|
|
latency = 0;
|
|
for (i = 0; i < SAMPLE_COUNT; ++i) {
|
|
if (latencies[i] > (avg + dev * 6))
|
|
latency += avg;
|
|
else
|
|
latency += latencies[i];
|
|
}
|
|
latency /= SAMPLE_COUNT;
|
|
|
|
_caps.latency = latency;
|
|
_caps.preempt_thresh = latency * 4;
|
|
_caps.syncleadtime_ms = latency * 50 / 1000;
|
|
|
|
csp_caps_initialized = TRUE;
|
|
return TRUE;
|
|
}
|
|
|
|
static struct csp_caps *caps(struct mcap_mcl *mcl)
|
|
{
|
|
if (!csp_caps_initialized)
|
|
if (!initialize_caps(mcl)) {
|
|
/* Temporary failure in reading BT clock */
|
|
return NULL;
|
|
}
|
|
|
|
return &_caps;
|
|
}
|
|
|
|
static int send_sync_cap_rsp(struct mcap_mcl *mcl, uint8_t rspcode,
|
|
uint8_t btclockres, uint16_t synclead,
|
|
uint16_t tmstampres, uint16_t tmstampacc)
|
|
{
|
|
mcap_md_sync_cap_rsp *rsp;
|
|
int sent;
|
|
|
|
rsp = g_new0(mcap_md_sync_cap_rsp, 1);
|
|
|
|
rsp->op = MCAP_MD_SYNC_CAP_RSP;
|
|
rsp->rc = rspcode;
|
|
|
|
rsp->btclock = btclockres;
|
|
rsp->sltime = htons(synclead);
|
|
rsp->timestnr = htons(tmstampres);
|
|
rsp->timestna = htons(tmstampacc);
|
|
|
|
sent = send_sync_cmd(mcl, rsp, sizeof(*rsp));
|
|
g_free(rsp);
|
|
|
|
return sent;
|
|
}
|
|
|
|
static void proc_sync_cap_req(struct mcap_mcl *mcl, uint8_t *cmd, uint32_t len)
|
|
{
|
|
mcap_md_sync_cap_req *req;
|
|
uint16_t required_accuracy;
|
|
uint16_t our_accuracy;
|
|
uint32_t btclock;
|
|
uint16_t btres;
|
|
|
|
if (len != sizeof(mcap_md_sync_cap_req)) {
|
|
send_sync_cap_rsp(mcl, MCAP_INVALID_PARAM_VALUE,
|
|
0, 0, 0, 0);
|
|
return;
|
|
}
|
|
|
|
if (!caps(mcl)) {
|
|
send_sync_cap_rsp(mcl, MCAP_RESOURCE_UNAVAILABLE,
|
|
0, 0, 0, 0);
|
|
return;
|
|
}
|
|
|
|
req = (mcap_md_sync_cap_req *) cmd;
|
|
required_accuracy = ntohs(req->timest);
|
|
our_accuracy = caps(mcl)->ts_acc;
|
|
|
|
if (required_accuracy < our_accuracy || required_accuracy < 1) {
|
|
send_sync_cap_rsp(mcl, MCAP_RESOURCE_UNAVAILABLE,
|
|
0, 0, 0, 0);
|
|
return;
|
|
}
|
|
|
|
if (!read_btclock_retry(mcl, &btclock, &btres)) {
|
|
send_sync_cap_rsp(mcl, MCAP_RESOURCE_UNAVAILABLE,
|
|
0, 0, 0, 0);
|
|
return;
|
|
}
|
|
|
|
mcl->csp->remote_caps = 1;
|
|
mcl->csp->rem_req_acc = required_accuracy;
|
|
|
|
send_sync_cap_rsp(mcl, MCAP_SUCCESS, btres,
|
|
caps(mcl)->syncleadtime_ms,
|
|
caps(mcl)->ts_res, our_accuracy);
|
|
}
|
|
|
|
static int send_sync_set_rsp(struct mcap_mcl *mcl, uint8_t rspcode,
|
|
uint32_t btclock, uint64_t timestamp,
|
|
uint16_t tmstampres)
|
|
{
|
|
mcap_md_sync_set_rsp *rsp;
|
|
int sent;
|
|
|
|
rsp = g_new0(mcap_md_sync_set_rsp, 1);
|
|
|
|
rsp->op = MCAP_MD_SYNC_SET_RSP;
|
|
rsp->rc = rspcode;
|
|
rsp->btclock = htonl(btclock);
|
|
rsp->timestst = hton64(timestamp);
|
|
rsp->timestsa = htons(tmstampres);
|
|
|
|
sent = send_sync_cmd(mcl, rsp, sizeof(*rsp));
|
|
g_free(rsp);
|
|
|
|
return sent;
|
|
}
|
|
|
|
static gboolean get_all_clocks(struct mcap_mcl *mcl, uint32_t *btclock,
|
|
struct timespec *base_time,
|
|
uint64_t *timestamp)
|
|
{
|
|
int latency;
|
|
int retry = 5;
|
|
uint16_t btres;
|
|
struct timespec t0;
|
|
|
|
if (!caps(mcl))
|
|
return FALSE;
|
|
|
|
latency = caps(mcl)->preempt_thresh + 1;
|
|
|
|
while (latency > caps(mcl)->preempt_thresh && --retry >= 0) {
|
|
|
|
clock_gettime(CLK, &t0);
|
|
|
|
if (!read_btclock(mcl, btclock, &btres))
|
|
continue;
|
|
|
|
clock_gettime(CLK, base_time);
|
|
|
|
/* Tries to detect preemption between clock_gettime
|
|
* and read_btclock by measuring transaction time
|
|
*/
|
|
latency = time_us(base_time) - time_us(&t0);
|
|
}
|
|
|
|
*timestamp = mcap_get_timestamp(mcl, base_time);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static gboolean sync_send_indication(gpointer user_data)
|
|
{
|
|
struct mcap_mcl *mcl;
|
|
mcap_md_sync_info_ind *cmd;
|
|
uint32_t btclock;
|
|
uint64_t tmstamp;
|
|
struct timespec base_time;
|
|
int sent;
|
|
|
|
if (!user_data)
|
|
return FALSE;
|
|
|
|
mcl = user_data;
|
|
|
|
if (!caps(mcl))
|
|
return FALSE;
|
|
|
|
if (!get_all_clocks(mcl, &btclock, &base_time, &tmstamp))
|
|
return FALSE;
|
|
|
|
cmd = g_new0(mcap_md_sync_info_ind, 1);
|
|
|
|
cmd->op = MCAP_MD_SYNC_INFO_IND;
|
|
cmd->btclock = htonl(btclock);
|
|
cmd->timestst = hton64(tmstamp);
|
|
cmd->timestsa = htons(caps(mcl)->latency);
|
|
|
|
sent = send_sync_cmd(mcl, cmd, sizeof(*cmd));
|
|
g_free(cmd);
|
|
|
|
return !sent;
|
|
}
|
|
|
|
static gboolean proc_sync_set_req_phase2(gpointer user_data)
|
|
{
|
|
struct mcap_mcl *mcl;
|
|
struct sync_set_data *data;
|
|
uint8_t update;
|
|
uint32_t sched_btclock;
|
|
uint64_t new_tmstamp;
|
|
int ind_freq;
|
|
int role;
|
|
uint32_t btclock;
|
|
uint64_t tmstamp;
|
|
struct timespec base_time;
|
|
uint16_t tmstampacc;
|
|
gboolean reset;
|
|
int delay;
|
|
|
|
if (!user_data)
|
|
return FALSE;
|
|
|
|
mcl = user_data;
|
|
|
|
if (!mcl->csp->set_data)
|
|
return FALSE;
|
|
|
|
data = mcl->csp->set_data;
|
|
update = data->update;
|
|
sched_btclock = data->sched_btclock;
|
|
new_tmstamp = data->timestamp;
|
|
ind_freq = data->ind_freq;
|
|
role = data->role;
|
|
|
|
if (!caps(mcl)) {
|
|
send_sync_set_rsp(mcl, MCAP_UNSPECIFIED_ERROR, 0, 0, 0);
|
|
return FALSE;
|
|
}
|
|
|
|
if (!get_all_clocks(mcl, &btclock, &base_time, &tmstamp)) {
|
|
send_sync_set_rsp(mcl, MCAP_UNSPECIFIED_ERROR, 0, 0, 0);
|
|
return FALSE;
|
|
}
|
|
|
|
if (get_btrole(mcl) != role) {
|
|
send_sync_set_rsp(mcl, MCAP_INVALID_OPERATION, 0, 0, 0);
|
|
return FALSE;
|
|
}
|
|
|
|
reset = (new_tmstamp != MCAP_TMSTAMP_DONTSET);
|
|
|
|
if (reset) {
|
|
if (sched_btclock != MCAP_BTCLOCK_IMMEDIATE) {
|
|
delay = bt2us(btdiff(sched_btclock, btclock));
|
|
if (delay >= 0 || ((new_tmstamp - delay) > 0)) {
|
|
new_tmstamp += delay;
|
|
DBG("CSP: reset w/ delay %dus, compensated",
|
|
delay);
|
|
} else
|
|
DBG("CSP: reset w/ delay %dus, uncompensated",
|
|
delay);
|
|
}
|
|
|
|
reset_tmstamp(mcl->csp, &base_time, new_tmstamp);
|
|
tmstamp = new_tmstamp;
|
|
}
|
|
|
|
tmstampacc = caps(mcl)->latency + caps(mcl)->ts_acc;
|
|
|
|
if (mcl->csp->ind_timer) {
|
|
g_source_remove(mcl->csp->ind_timer);
|
|
mcl->csp->ind_timer = 0;
|
|
}
|
|
|
|
if (update) {
|
|
int when = ind_freq + caps(mcl)->syncleadtime_ms;
|
|
mcl->csp->ind_timer = g_timeout_add(when,
|
|
sync_send_indication,
|
|
mcl);
|
|
}
|
|
|
|
send_sync_set_rsp(mcl, MCAP_SUCCESS, btclock, tmstamp, tmstampacc);
|
|
|
|
/* First indication after set is immediate */
|
|
if (update)
|
|
sync_send_indication(mcl);
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
static void proc_sync_set_req(struct mcap_mcl *mcl, uint8_t *cmd, uint32_t len)
|
|
{
|
|
mcap_md_sync_set_req *req;
|
|
uint32_t sched_btclock, cur_btclock;
|
|
uint16_t btres;
|
|
uint8_t update;
|
|
uint64_t timestamp;
|
|
struct sync_set_data *set_data;
|
|
int phase2_delay, ind_freq, when;
|
|
|
|
if (len != sizeof(mcap_md_sync_set_req)) {
|
|
send_sync_set_rsp(mcl, MCAP_INVALID_PARAM_VALUE, 0, 0, 0);
|
|
return;
|
|
}
|
|
|
|
req = (mcap_md_sync_set_req *) cmd;
|
|
sched_btclock = ntohl(req->btclock);
|
|
update = req->timestui;
|
|
timestamp = ntoh64(req->timestst);
|
|
|
|
if (sched_btclock != MCAP_BTCLOCK_IMMEDIATE &&
|
|
!valid_btclock(sched_btclock)) {
|
|
send_sync_set_rsp(mcl, MCAP_INVALID_PARAM_VALUE, 0, 0, 0);
|
|
return;
|
|
}
|
|
|
|
if (update > 1) {
|
|
send_sync_set_rsp(mcl, MCAP_INVALID_PARAM_VALUE, 0, 0, 0);
|
|
return;
|
|
}
|
|
|
|
if (!mcl->csp->remote_caps) {
|
|
/* Remote side did not ask our capabilities yet */
|
|
send_sync_set_rsp(mcl, MCAP_INVALID_PARAM_VALUE, 0, 0, 0);
|
|
return;
|
|
}
|
|
|
|
if (!caps(mcl)) {
|
|
send_sync_set_rsp(mcl, MCAP_UNSPECIFIED_ERROR, 0, 0, 0);
|
|
return;
|
|
}
|
|
|
|
if (!read_btclock_retry(mcl, &cur_btclock, &btres)) {
|
|
send_sync_set_rsp(mcl, MCAP_UNSPECIFIED_ERROR, 0, 0, 0);
|
|
return;
|
|
}
|
|
|
|
if (sched_btclock == MCAP_BTCLOCK_IMMEDIATE)
|
|
phase2_delay = 0;
|
|
else {
|
|
phase2_delay = btdiff(cur_btclock, sched_btclock);
|
|
|
|
if (phase2_delay < 0) {
|
|
/* can not reset in the past tense */
|
|
send_sync_set_rsp(mcl, MCAP_INVALID_PARAM_VALUE,
|
|
0, 0, 0);
|
|
return;
|
|
}
|
|
|
|
/* Convert to miliseconds */
|
|
phase2_delay = bt2ms(phase2_delay);
|
|
|
|
if (phase2_delay > 61*1000) {
|
|
/* More than 60 seconds in the future */
|
|
send_sync_set_rsp(mcl, MCAP_INVALID_PARAM_VALUE,
|
|
0, 0, 0);
|
|
return;
|
|
} else if (phase2_delay < caps(mcl)->latency / 1000) {
|
|
/* Too fast for us to do in time */
|
|
send_sync_set_rsp(mcl, MCAP_INVALID_PARAM_VALUE,
|
|
0, 0, 0);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (update) {
|
|
/* Indication frequency: required accuracy divided by ours */
|
|
/* Converted to milisseconds */
|
|
ind_freq = (1000 * mcl->csp->rem_req_acc) / caps(mcl)->ts_acc;
|
|
|
|
if (ind_freq < MAX(caps(mcl)->latency * 2 / 1000, 100)) {
|
|
/* Too frequent, we can't handle */
|
|
send_sync_set_rsp(mcl, MCAP_INVALID_PARAM_VALUE,
|
|
0, 0, 0);
|
|
return;
|
|
}
|
|
|
|
DBG("CSP: indication every %dms", ind_freq);
|
|
} else
|
|
ind_freq = 0;
|
|
|
|
if (mcl->csp->ind_timer) {
|
|
/* Old indications are no longer sent */
|
|
g_source_remove(mcl->csp->ind_timer);
|
|
mcl->csp->ind_timer = 0;
|
|
}
|
|
|
|
if (!mcl->csp->set_data)
|
|
mcl->csp->set_data = g_new0(struct sync_set_data, 1);
|
|
|
|
set_data = (struct sync_set_data *) mcl->csp->set_data;
|
|
|
|
set_data->update = update;
|
|
set_data->sched_btclock = sched_btclock;
|
|
set_data->timestamp = timestamp;
|
|
set_data->ind_freq = ind_freq;
|
|
set_data->role = get_btrole(mcl);
|
|
|
|
/* TODO is there some way to schedule a call based directly on
|
|
* a BT clock value, instead of this estimation that uses
|
|
* the SO clock? */
|
|
|
|
if (phase2_delay > 0) {
|
|
when = phase2_delay + caps(mcl)->syncleadtime_ms;
|
|
mcl->csp->set_timer = g_timeout_add(when,
|
|
proc_sync_set_req_phase2,
|
|
mcl);
|
|
} else
|
|
proc_sync_set_req_phase2(mcl);
|
|
|
|
/* First indication is immediate */
|
|
if (update)
|
|
sync_send_indication(mcl);
|
|
}
|
|
|
|
static void proc_sync_cap_rsp(struct mcap_mcl *mcl, uint8_t *cmd, uint32_t len)
|
|
{
|
|
mcap_md_sync_cap_rsp *rsp;
|
|
uint8_t mcap_err;
|
|
uint8_t btclockres;
|
|
uint16_t synclead;
|
|
uint16_t tmstampres;
|
|
uint16_t tmstampacc;
|
|
struct mcap_sync_cap_cbdata *cbdata;
|
|
mcap_sync_cap_cb cb;
|
|
gpointer user_data;
|
|
|
|
if (mcl->csp->csp_req != MCAP_MD_SYNC_CAP_REQ) {
|
|
DBG("CSP: got unexpected cap respose");
|
|
return;
|
|
}
|
|
|
|
if (!mcl->csp->csp_priv_data) {
|
|
DBG("CSP: no priv data for cap respose");
|
|
return;
|
|
}
|
|
|
|
cbdata = mcl->csp->csp_priv_data;
|
|
cb = cbdata->cb;
|
|
user_data = cbdata->user_data;
|
|
g_free(cbdata);
|
|
|
|
mcl->csp->csp_priv_data = NULL;
|
|
mcl->csp->csp_req = 0;
|
|
|
|
if (len != sizeof(mcap_md_sync_cap_rsp)) {
|
|
DBG("CSP: got corrupted cap respose");
|
|
return;
|
|
}
|
|
|
|
rsp = (mcap_md_sync_cap_rsp *) cmd;
|
|
mcap_err = rsp->rc;
|
|
btclockres = rsp->btclock;
|
|
synclead = ntohs(rsp->sltime);
|
|
tmstampres = ntohs(rsp->timestnr);
|
|
tmstampacc = ntohs(rsp->timestna);
|
|
|
|
if (!mcap_err)
|
|
mcl->csp->local_caps = TRUE;
|
|
|
|
cb(mcl, mcap_err, btclockres, synclead, tmstampres, tmstampacc, NULL,
|
|
user_data);
|
|
}
|
|
|
|
static void proc_sync_set_rsp(struct mcap_mcl *mcl, uint8_t *cmd, uint32_t len)
|
|
{
|
|
mcap_md_sync_set_rsp *rsp;
|
|
uint8_t mcap_err;
|
|
uint32_t btclock;
|
|
uint64_t timestamp;
|
|
uint16_t accuracy;
|
|
struct mcap_sync_set_cbdata *cbdata;
|
|
mcap_sync_set_cb cb;
|
|
gpointer user_data;
|
|
|
|
if (mcl->csp->csp_req != MCAP_MD_SYNC_SET_REQ) {
|
|
DBG("CSP: got unexpected set respose");
|
|
return;
|
|
}
|
|
|
|
if (!mcl->csp->csp_priv_data) {
|
|
DBG("CSP: no priv data for set respose");
|
|
return;
|
|
}
|
|
|
|
cbdata = mcl->csp->csp_priv_data;
|
|
cb = cbdata->cb;
|
|
user_data = cbdata->user_data;
|
|
g_free(cbdata);
|
|
|
|
mcl->csp->csp_priv_data = NULL;
|
|
mcl->csp->csp_req = 0;
|
|
|
|
if (len != sizeof(mcap_md_sync_set_rsp)) {
|
|
DBG("CSP: got corrupted set respose");
|
|
return;
|
|
}
|
|
|
|
rsp = (mcap_md_sync_set_rsp *) cmd;
|
|
mcap_err = rsp->rc;
|
|
btclock = ntohl(rsp->btclock);
|
|
timestamp = ntoh64(rsp->timestst);
|
|
accuracy = ntohs(rsp->timestsa);
|
|
|
|
if (!mcap_err && !valid_btclock(btclock))
|
|
mcap_err = MCAP_ERROR_INVALID_ARGS;
|
|
|
|
cb(mcl, mcap_err, btclock, timestamp, accuracy, NULL, user_data);
|
|
}
|
|
|
|
static void proc_sync_info_ind(struct mcap_mcl *mcl, uint8_t *cmd, uint32_t len)
|
|
{
|
|
mcap_md_sync_info_ind *req;
|
|
struct sync_info_ind_data data;
|
|
uint32_t btclock;
|
|
|
|
if (!mcl->csp->ind_expected) {
|
|
DBG("CSP: received unexpected info indication");
|
|
return;
|
|
}
|
|
|
|
if (len != sizeof(mcap_md_sync_info_ind))
|
|
return;
|
|
|
|
req = (mcap_md_sync_info_ind *) cmd;
|
|
|
|
btclock = ntohl(req->btclock);
|
|
|
|
if (!valid_btclock(btclock))
|
|
return;
|
|
|
|
data.btclock = btclock;
|
|
data.timestamp = ntoh64(req->timestst);
|
|
data.accuracy = ntohs(req->timestsa);
|
|
|
|
if (mcl->mi->mcl_sync_infoind_cb)
|
|
mcl->mi->mcl_sync_infoind_cb(mcl, &data);
|
|
}
|
|
|
|
void proc_sync_cmd(struct mcap_mcl *mcl, uint8_t *cmd, uint32_t len)
|
|
{
|
|
if (!mcl->mi->csp_enabled || !mcl->csp) {
|
|
switch (cmd[0]) {
|
|
case MCAP_MD_SYNC_CAP_REQ:
|
|
send_unsupported_cap_req(mcl);
|
|
break;
|
|
case MCAP_MD_SYNC_SET_REQ:
|
|
send_unsupported_set_req(mcl);
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
switch (cmd[0]) {
|
|
case MCAP_MD_SYNC_CAP_REQ:
|
|
proc_sync_cap_req(mcl, cmd, len);
|
|
break;
|
|
case MCAP_MD_SYNC_CAP_RSP:
|
|
proc_sync_cap_rsp(mcl, cmd, len);
|
|
break;
|
|
case MCAP_MD_SYNC_SET_REQ:
|
|
proc_sync_set_req(mcl, cmd, len);
|
|
break;
|
|
case MCAP_MD_SYNC_SET_RSP:
|
|
proc_sync_set_rsp(mcl, cmd, len);
|
|
break;
|
|
case MCAP_MD_SYNC_INFO_IND:
|
|
proc_sync_info_ind(mcl, cmd, len);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void mcap_sync_cap_req(struct mcap_mcl *mcl, uint16_t reqacc,
|
|
mcap_sync_cap_cb cb, gpointer user_data,
|
|
GError **err)
|
|
{
|
|
struct mcap_sync_cap_cbdata *cbdata;
|
|
mcap_md_sync_cap_req *cmd;
|
|
|
|
if (!mcl->mi->csp_enabled || !mcl->csp) {
|
|
g_set_error(err,
|
|
MCAP_CSP_ERROR,
|
|
MCAP_ERROR_RESOURCE_UNAVAILABLE,
|
|
"CSP not enabled for the instance");
|
|
return;
|
|
}
|
|
|
|
if (mcl->csp->csp_req) {
|
|
g_set_error(err,
|
|
MCAP_CSP_ERROR,
|
|
MCAP_ERROR_RESOURCE_UNAVAILABLE,
|
|
"Pending CSP request");
|
|
return;
|
|
}
|
|
|
|
mcl->csp->csp_req = MCAP_MD_SYNC_CAP_REQ;
|
|
cmd = g_new0(mcap_md_sync_cap_req, 1);
|
|
|
|
cmd->op = MCAP_MD_SYNC_CAP_REQ;
|
|
cmd->timest = htons(reqacc);
|
|
|
|
cbdata = g_new0(struct mcap_sync_cap_cbdata, 1);
|
|
cbdata->cb = cb;
|
|
cbdata->user_data = user_data;
|
|
mcl->csp->csp_priv_data = cbdata;
|
|
|
|
send_sync_cmd(mcl, cmd, sizeof(*cmd));
|
|
|
|
g_free(cmd);
|
|
}
|
|
|
|
void mcap_sync_set_req(struct mcap_mcl *mcl, uint8_t update, uint32_t btclock,
|
|
uint64_t timestamp, mcap_sync_set_cb cb,
|
|
gpointer user_data, GError **err)
|
|
{
|
|
mcap_md_sync_set_req *cmd;
|
|
struct mcap_sync_set_cbdata *cbdata;
|
|
|
|
if (!mcl->mi->csp_enabled || !mcl->csp) {
|
|
g_set_error(err,
|
|
MCAP_CSP_ERROR,
|
|
MCAP_ERROR_RESOURCE_UNAVAILABLE,
|
|
"CSP not enabled for the instance");
|
|
return;
|
|
}
|
|
|
|
if (!mcl->csp->local_caps) {
|
|
g_set_error(err,
|
|
MCAP_CSP_ERROR,
|
|
MCAP_ERROR_RESOURCE_UNAVAILABLE,
|
|
"Did not get CSP caps from slave yet");
|
|
return;
|
|
}
|
|
|
|
if (mcl->csp->csp_req) {
|
|
g_set_error(err,
|
|
MCAP_CSP_ERROR,
|
|
MCAP_ERROR_RESOURCE_UNAVAILABLE,
|
|
"Pending CSP request");
|
|
return;
|
|
}
|
|
|
|
mcl->csp->csp_req = MCAP_MD_SYNC_SET_REQ;
|
|
cmd = g_new0(mcap_md_sync_set_req, 1);
|
|
|
|
cmd->op = MCAP_MD_SYNC_SET_REQ;
|
|
cmd->timestui = update;
|
|
cmd->btclock = htonl(btclock);
|
|
cmd->timestst = hton64(timestamp);
|
|
|
|
mcl->csp->ind_expected = update;
|
|
|
|
cbdata = g_new0(struct mcap_sync_set_cbdata, 1);
|
|
cbdata->cb = cb;
|
|
cbdata->user_data = user_data;
|
|
mcl->csp->csp_priv_data = cbdata;
|
|
|
|
send_sync_cmd(mcl, cmd, sizeof(*cmd));
|
|
|
|
g_free(cmd);
|
|
}
|
|
|
|
void mcap_enable_csp(struct mcap_instance *mi)
|
|
{
|
|
mi->csp_enabled = TRUE;
|
|
}
|
|
|
|
void mcap_disable_csp(struct mcap_instance *mi)
|
|
{
|
|
mi->csp_enabled = FALSE;
|
|
}
|