/* * * BlueZ - Bluetooth protocol stack for Linux * * Copyright (C) 2000-2001 Qualcomm Incorporated * Copyright (C) 2002-2003 Maxim Krasnyansky * Copyright (C) 2002-2010 Marcel Holtmann * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include "bluetooth.h" #include "hci.h" #include "hci_lib.h" #ifndef MIN #define MIN(x, y) ((x) < (y) ? (x) : (y)) #endif typedef struct { char *str; unsigned int val; } hci_map; static char *hci_bit2str(hci_map *m, unsigned int val) { char *str = malloc(120); char *ptr = str; if (!str) return NULL; *ptr = 0; while (m->str) { if ((unsigned int) m->val & val) ptr += sprintf(ptr, "%s ", m->str); m++; } return str; } static int hci_str2bit(hci_map *map, char *str, unsigned int *val) { char *t, *ptr; hci_map *m; int set; if (!str || !(str = ptr = strdup(str))) return 0; *val = set = 0; while ((t = strsep(&ptr, ","))) { for (m = map; m->str; m++) { if (!strcasecmp(m->str, t)) { *val |= (unsigned int) m->val; set = 1; } } } free(str); return set; } static char *hci_uint2str(hci_map *m, unsigned int val) { char *str = malloc(50); char *ptr = str; if (!str) return NULL; *ptr = 0; while (m->str) { if ((unsigned int) m->val == val) { ptr += sprintf(ptr, "%s", m->str); break; } m++; } return str; } static int hci_str2uint(hci_map *map, char *str, unsigned int *val) { char *t, *ptr; hci_map *m; int set = 0; if (!str) return 0; str = ptr = strdup(str); while ((t = strsep(&ptr, ","))) { for (m = map; m->str; m++) { if (!strcasecmp(m->str,t)) { *val = (unsigned int) m->val; set = 1; break; } } } free(str); return set; } char *hci_bustostr(int bus) { switch (bus) { case HCI_VIRTUAL: return "VIRTUAL"; case HCI_USB: return "USB"; case HCI_PCCARD: return "PCCARD"; case HCI_UART: return "UART"; case HCI_RS232: return "RS232"; case HCI_PCI: return "PCI"; case HCI_SDIO: return "SDIO"; default: return "UNKNOWN"; } } char *hci_dtypetostr(int type) { return hci_bustostr(type & 0x0f); } char *hci_typetostr(int type) { switch (type) { case HCI_BREDR: return "BR/EDR"; case HCI_AMP: return "AMP"; default: return "UNKNOWN"; } } /* HCI dev flags mapping */ static hci_map dev_flags_map[] = { { "UP", HCI_UP }, { "INIT", HCI_INIT }, { "RUNNING", HCI_RUNNING }, { "RAW", HCI_RAW }, { "PSCAN", HCI_PSCAN }, { "ISCAN", HCI_ISCAN }, { "INQUIRY", HCI_INQUIRY }, { "AUTH", HCI_AUTH }, { "ENCRYPT", HCI_ENCRYPT }, { NULL } }; char *hci_dflagstostr(uint32_t flags) { char *str = bt_malloc(50); char *ptr = str; hci_map *m = dev_flags_map; if (!str) return NULL; *ptr = 0; if (!hci_test_bit(HCI_UP, &flags)) ptr += sprintf(ptr, "DOWN "); while (m->str) { if (hci_test_bit(m->val, &flags)) ptr += sprintf(ptr, "%s ", m->str); m++; } return str; } /* HCI packet type mapping */ static hci_map pkt_type_map[] = { { "DM1", HCI_DM1 }, { "DM3", HCI_DM3 }, { "DM5", HCI_DM5 }, { "DH1", HCI_DH1 }, { "DH3", HCI_DH3 }, { "DH5", HCI_DH5 }, { "HV1", HCI_HV1 }, { "HV2", HCI_HV2 }, { "HV3", HCI_HV3 }, { "2-DH1", HCI_2DH1 }, { "2-DH3", HCI_2DH3 }, { "2-DH5", HCI_2DH5 }, { "3-DH1", HCI_3DH1 }, { "3-DH3", HCI_3DH3 }, { "3-DH5", HCI_3DH5 }, { NULL } }; static hci_map sco_ptype_map[] = { { "HV1", 0x0001 }, { "HV2", 0x0002 }, { "HV3", 0x0004 }, { "EV3", HCI_EV3 }, { "EV4", HCI_EV4 }, { "EV5", HCI_EV5 }, { "2-EV3", HCI_2EV3 }, { "2-EV5", HCI_2EV5 }, { "3-EV3", HCI_3EV3 }, { "3-EV5", HCI_3EV5 }, { NULL } }; char *hci_ptypetostr(unsigned int ptype) { return hci_bit2str(pkt_type_map, ptype); } int hci_strtoptype(char *str, unsigned int *val) { return hci_str2bit(pkt_type_map, str, val); } char *hci_scoptypetostr(unsigned int ptype) { return hci_bit2str(sco_ptype_map, ptype); } int hci_strtoscoptype(char *str, unsigned int *val) { return hci_str2bit(sco_ptype_map, str, val); } /* Link policy mapping */ static hci_map link_policy_map[] = { { "NONE", 0 }, { "RSWITCH", HCI_LP_RSWITCH }, { "HOLD", HCI_LP_HOLD }, { "SNIFF", HCI_LP_SNIFF }, { "PARK", HCI_LP_PARK }, { NULL } }; char *hci_lptostr(unsigned int lp) { return hci_bit2str(link_policy_map, lp); } int hci_strtolp(char *str, unsigned int *val) { return hci_str2bit(link_policy_map, str, val); } /* Link mode mapping */ static hci_map link_mode_map[] = { { "NONE", 0 }, { "ACCEPT", HCI_LM_ACCEPT }, { "MASTER", HCI_LM_MASTER }, { "AUTH", HCI_LM_AUTH }, { "ENCRYPT", HCI_LM_ENCRYPT }, { "TRUSTED", HCI_LM_TRUSTED }, { "RELIABLE", HCI_LM_RELIABLE }, { "SECURE", HCI_LM_SECURE }, { NULL } }; char *hci_lmtostr(unsigned int lm) { char *s, *str = bt_malloc(50); if (!str) return NULL; *str = 0; if (!(lm & HCI_LM_MASTER)) strcpy(str, "SLAVE "); s = hci_bit2str(link_mode_map, lm); if (!s) { bt_free(str); return NULL; } strcat(str, s); free(s); return str; } int hci_strtolm(char *str, unsigned int *val) { return hci_str2bit(link_mode_map, str, val); } /* Command mapping */ static hci_map commands_map[] = { { "Inquiry", 0 }, { "Inquiry Cancel", 1 }, { "Periodic Inquiry Mode", 2 }, { "Exit Periodic Inquiry Mode", 3 }, { "Create Connection", 4 }, { "Disconnect", 5 }, { "Add SCO Connection", 6 }, { "Cancel Create Connection", 7 }, { "Accept Connection Request", 8 }, { "Reject Connection Request", 9 }, { "Link Key Request Reply", 10 }, { "Link Key Request Negative Reply", 11 }, { "PIN Code Request Reply", 12 }, { "PIN Code Request Negative Reply", 13 }, { "Change Connection Packet Type", 14 }, { "Authentication Requested", 15 }, { "Set Connection Encryption", 16 }, { "Change Connection Link Key", 17 }, { "Master Link Key", 18 }, { "Remote Name Request", 19 }, { "Cancel Remote Name Request", 20 }, { "Read Remote Supported Features", 21 }, { "Read Remote Extended Features", 22 }, { "Read Remote Version Information", 23 }, { "Read Clock Offset", 24 }, { "Read LMP Handle", 25 }, { "Reserved", 26 }, { "Reserved", 27 }, { "Reserved", 28 }, { "Reserved", 29 }, { "Reserved", 30 }, { "Reserved", 31 }, { "Reserved", 32 }, { "Hold Mode", 33 }, { "Sniff Mode", 34 }, { "Exit Sniff Mode", 35 }, { "Park State", 36 }, { "Exit Park State", 37 }, { "QoS Setup", 38 }, { "Role Discovery", 39 }, { "Switch Role", 40 }, { "Read Link Policy Settings", 41 }, { "Write Link Policy Settings", 42 }, { "Read Default Link Policy Settings", 43 }, { "Write Default Link Policy Settings", 44 }, { "Flow Specification", 45 }, { "Set Event Mask", 46 }, { "Reset", 47 }, { "Set Event Filter", 48 }, { "Flush", 49 }, { "Read PIN Type", 50 }, { "Write PIN Type", 51 }, { "Create New Unit Key", 52 }, { "Read Stored Link Key", 53 }, { "Write Stored Link Key", 54 }, { "Delete Stored Link Key", 55 }, { "Write Local Name", 56 }, { "Read Local Name", 57 }, { "Read Connection Accept Timeout", 58 }, { "Write Connection Accept Timeout", 59 }, { "Read Page Timeout", 60 }, { "Write Page Timeout", 61 }, { "Read Scan Enable", 62 }, { "Write Scan Enable", 63 }, { "Read Page Scan Activity", 64 }, { "Write Page Scan Activity", 65 }, { "Read Inquiry Scan Activity", 66 }, { "Write Inquiry Scan Activity", 67 }, { "Read Authentication Enable", 68 }, { "Write Authentication Enable", 69 }, { "Read Encryption Mode", 70 }, { "Write Encryption Mode", 71 }, { "Read Class Of Device", 72 }, { "Write Class Of Device", 73 }, { "Read Voice Setting", 74 }, { "Write Voice Setting", 75 }, { "Read Automatic Flush Timeout", 76 }, { "Write Automatic Flush Timeout", 77 }, { "Read Num Broadcast Retransmissions", 78 }, { "Write Num Broadcast Retransmissions", 79 }, { "Read Hold Mode Activity", 80 }, { "Write Hold Mode Activity", 81 }, { "Read Transmit Power Level", 82 }, { "Read Synchronous Flow Control Enable", 83 }, { "Write Synchronous Flow Control Enable", 84 }, { "Set Host Controller To Host Flow Control", 85 }, { "Host Buffer Size", 86 }, { "Host Number Of Completed Packets", 87 }, { "Read Link Supervision Timeout", 88 }, { "Write Link Supervision Timeout", 89 }, { "Read Number of Supported IAC", 90 }, { "Read Current IAC LAP", 91 }, { "Write Current IAC LAP", 92 }, { "Read Page Scan Period Mode", 93 }, { "Write Page Scan Period Mode", 94 }, { "Read Page Scan Mode", 95 }, { "Write Page Scan Mode", 96 }, { "Set AFH Channel Classification", 97 }, { "Reserved", 98 }, { "Reserved", 99 }, { "Read Inquiry Scan Type", 100 }, { "Write Inquiry Scan Type", 101 }, { "Read Inquiry Mode", 102 }, { "Write Inquiry Mode", 103 }, { "Read Page Scan Type", 104 }, { "Write Page Scan Type", 105 }, { "Read AFH Channel Assessment Mode", 106 }, { "Write AFH Channel Assessment Mode", 107 }, { "Reserved", 108 }, { "Reserved", 109 }, { "Reserved", 110 }, { "Reserved", 111 }, { "Reserved", 112 }, { "Reserved", 113 }, { "Reserved", 114 }, { "Read Local Version Information", 115 }, { "Read Local Supported Commands", 116 }, { "Read Local Supported Features", 117 }, { "Read Local Extended Features", 118 }, { "Read Buffer Size", 119 }, { "Read Country Code", 120 }, { "Read BD ADDR", 121 }, { "Read Failed Contact Counter", 122 }, { "Reset Failed Contact Counter", 123 }, { "Get Link Quality", 124 }, { "Read RSSI", 125 }, { "Read AFH Channel Map", 126 }, { "Read BD Clock", 127 }, { "Read Loopback Mode", 128 }, { "Write Loopback Mode", 129 }, { "Enable Device Under Test Mode", 130 }, { "Setup Synchronous Connection", 131 }, { "Accept Synchronous Connection", 132 }, { "Reject Synchronous Connection", 133 }, { "Reserved", 134 }, { "Reserved", 135 }, { "Read Extended Inquiry Response", 136 }, { "Write Extended Inquiry Response", 137 }, { "Refresh Encryption Key", 138 }, { "Reserved", 139 }, { "Sniff Subrating", 140 }, { "Read Simple Pairing Mode", 141 }, { "Write Simple Pairing Mode", 142 }, { "Read Local OOB Data", 143 }, { "Read Inquiry Response Transmit Power Level", 144 }, { "Write Inquiry Transmit Power Level", 145 }, { "Read Default Erroneous Data Reporting", 146 }, { "Write Default Erroneous Data Reporting", 147 }, { "Reserved", 148 }, { "Reserved", 149 }, { "Reserved", 150 }, { "IO Capability Request Reply", 151 }, { "User Confirmation Request Reply", 152 }, { "User Confirmation Request Negative Reply", 153 }, { "User Passkey Request Reply", 154 }, { "User Passkey Request Negative Reply", 155 }, { "Remote OOB Data Request Reply", 156 }, { "Write Simple Pairing Debug Mode", 157 }, { "Enhanced Flush", 158 }, { "Remote OOB Data Request Negative Reply", 159 }, { "Reserved", 160 }, { "Reserved", 161 }, { "Send Keypress Notification", 162 }, { "IO Capability Request Negative Reply", 163 }, { "Read Encryption Key Size", 164 }, { "Reserved", 165 }, { "Reserved", 166 }, { "Reserved", 167 }, { "Create Physical Link", 168 }, { "Accept Physical Link", 169 }, { "Disconnect Physical Link", 170 }, { "Create Logical Link", 171 }, { "Accept Logical Link", 172 }, { "Disconnect Logical Link", 173 }, { "Logical Link Cancel", 174 }, { "Flow Specification Modify", 175 }, { "Read Logical Link Accept Timeout", 176 }, { "Write Logical Link Accept Timeout", 177 }, { "Set Event Mask Page 2", 178 }, { "Read Location Data", 179 }, { "Write Location Data", 180 }, { "Read Local AMP Info", 181 }, { "Read Local AMP_ASSOC", 182 }, { "Write Remote AMP_ASSOC", 183 }, { "Read Flow Control Mode", 184 }, { "Write Flow Control Mode", 185 }, { "Read Data Block Size", 186 }, { "Reserved", 187 }, { "Reserved", 188 }, { "Enable AMP Receiver Reports", 189 }, { "AMP Test End", 190 }, { "AMP Test Command", 191 }, { "Read Enhanced Transmit Power Level", 192 }, { "Reserved", 193 }, { "Read Best Effort Flush Timeout", 194 }, { "Write Best Effort Flush Timeout", 195 }, { "Short Range Mode", 196 }, { "Read LE Host Support", 197 }, { "Write LE Host Support", 198 }, { "Reserved", 199 }, { "LE Set Event Mask", 200 }, { "LE Read Buffer Size", 201 }, { "LE Read Local Supported Features", 202 }, { "Reserved", 203 }, { "LE Set Random Address", 204 }, { "LE Set Advertising Parameters", 205 }, { "LE Read Advertising Channel TX Power", 206 }, { "LE Set Advertising Data", 207 }, { "LE Set Scan Response Data", 208 }, { "LE Set Advertise Enable", 209 }, { "LE Set Scan Parameters", 210 }, { "LE Set Scan Enable", 211 }, { "LE Create Connection", 212 }, { "LE Create Connection Cancel", 213 }, { "LE Read White List Size", 214 }, { "LE Clear White List", 215 }, { "LE Add Device To White List", 216 }, { "LE Remove Device From White List", 217 }, { "LE Connection Update", 218 }, { "LE Set Host Channel Classification", 219 }, { "LE Read Channel Map", 220 }, { "LE Read Remote Used Features", 221 }, { "LE Encrypt", 222 }, { "LE Rand", 223 }, { "LE Start Encryption", 224 }, { "LE Long Term Key Request Reply", 225 }, { "LE Long Term Key Request Negative Reply", 226 }, { "LE Read Supported States", 227 }, { "LE Receiver Test", 228 }, { "LE Transmitter Test", 229 }, { "LE Test End", 230 }, { "Reserved", 231 }, { NULL } }; char *hci_cmdtostr(unsigned int cmd) { return hci_uint2str(commands_map, cmd); } char *hci_commandstostr(uint8_t *commands, char *pref, int width) { unsigned int maxwidth = width - 3; hci_map *m; char *off, *ptr, *str; int size = 10; m = commands_map; while (m->str) { if (commands[m->val / 8] & (1 << (m->val % 8))) size += strlen(m->str) + (pref ? strlen(pref) : 0) + 3; m++; } str = bt_malloc(size); if (!str) return NULL; ptr = str; *ptr = '\0'; if (pref) ptr += sprintf(ptr, "%s", pref); off = ptr; m = commands_map; while (m->str) { if (commands[m->val / 8] & (1 << (m->val % 8))) { if (strlen(off) + strlen(m->str) > maxwidth) { ptr += sprintf(ptr, "\n%s", pref ? pref : ""); off = ptr; } ptr += sprintf(ptr, "'%s' ", m->str); } m++; } return str; } /* Version mapping */ static hci_map ver_map[] = { { "1.0b", 0x00 }, { "1.1", 0x01 }, { "1.2", 0x02 }, { "2.0", 0x03 }, { "2.1", 0x04 }, { "3.0", 0x05 }, { "4.0", 0x06 }, { NULL } }; char *hci_vertostr(unsigned int ver) { return hci_uint2str(ver_map, ver); } int hci_strtover(char *str, unsigned int *ver) { return hci_str2uint(ver_map, str, ver); } char *lmp_vertostr(unsigned int ver) { return hci_uint2str(ver_map, ver); } int lmp_strtover(char *str, unsigned int *ver) { return hci_str2uint(ver_map, str, ver); } /* LMP features mapping */ static hci_map lmp_features_map[8][9] = { { /* Byte 0 */ { "<3-slot packets>", LMP_3SLOT }, /* Bit 0 */ { "<5-slot packets>", LMP_5SLOT }, /* Bit 1 */ { "", LMP_ENCRYPT }, /* Bit 2 */ { "", LMP_SOFFSET }, /* Bit 3 */ { "", LMP_TACCURACY }, /* Bit 4 */ { "", LMP_RSWITCH }, /* Bit 5 */ { "", LMP_HOLD }, /* Bit 6 */ { "", LMP_SNIFF }, /* Bit 7 */ { NULL } }, { /* Byte 1 */ { "", LMP_PARK }, /* Bit 0 */ { "", LMP_RSSI }, /* Bit 1 */ { "", LMP_QUALITY }, /* Bit 2 */ { "", LMP_SCO }, /* Bit 3 */ { "", LMP_HV2 }, /* Bit 4 */ { "", LMP_HV3 }, /* Bit 5 */ { "", LMP_ULAW }, /* Bit 6 */ { "", LMP_ALAW }, /* Bit 7 */ { NULL } }, { /* Byte 2 */ { "", LMP_CVSD }, /* Bit 0 */ { "", LMP_PSCHEME }, /* Bit 1 */ { "", LMP_PCONTROL }, /* Bit 2 */ { "", LMP_TRSP_SCO }, /* Bit 3 */ { "",LMP_BCAST_ENC }, /* Bit 7 */ { NULL } }, { /* Byte 3 */ { "", 0x01 }, /* Bit 0 */ { "", LMP_EDR_ACL_2M }, /* Bit 1 */ { "", LMP_EDR_ACL_3M }, /* Bit 2 */ { "", LMP_ENH_ISCAN }, /* Bit 3 */ { "", LMP_ILACE_ISCAN }, /* Bit 4 */ { "", LMP_ILACE_PSCAN }, /* Bit 5 */ { "",LMP_RSSI_INQ }, /* Bit 6 */ { "", LMP_ESCO }, /* Bit 7 */ { NULL } }, { /* Byte 4 */ { "", LMP_EV4 }, /* Bit 0 */ { "", LMP_EV5 }, /* Bit 1 */ { "", 0x04 }, /* Bit 2 */ { "", LMP_AFH_CAP_SLV }, /* Bit 3 */ { "", LMP_AFH_CLS_SLV }, /* Bit 4 */ { "
", LMP_NO_BREDR }, /* Bit 5 */ { "", LMP_LE }, /* Bit 6 */ { "<3-slot EDR ACL>", LMP_EDR_3SLOT }, /* Bit 7 */ { NULL } }, { /* Byte 5 */ { "<5-slot EDR ACL>", LMP_EDR_5SLOT }, /* Bit 0 */ { "", LMP_SNIFF_SUBR }, /* Bit 1 */ { "", LMP_PAUSE_ENC }, /* Bit 2 */ { "", LMP_AFH_CAP_MST }, /* Bit 3 */ { "",LMP_AFH_CLS_MST }, /* Bit 4 */ { "", LMP_EDR_ESCO_2M }, /* Bit 5 */ { "", LMP_EDR_ESCO_3M }, /* Bit 6 */ { "<3-slot EDR eSCO>", LMP_EDR_3S_ESCO }, /* Bit 7 */ { NULL } }, { /* Byte 6 */ { "", LMP_EXT_INQ }, /* Bit 0 */ { "", LMP_LE_BREDR }, /* Bit 1 */ { "", 0x04 }, /* Bit 2 */ { "", LMP_SIMPLE_PAIR }, /* Bit 3 */ { "", LMP_ENCAPS_PDU }, /* Bit 4 */ { "", LMP_ERR_DAT_REP }, /* Bit 5 */ { "", LMP_NFLUSH_PKTS }, /* Bit 6 */ { "", 0x80 }, /* Bit 7 */ { NULL } }, { /* Byte 7 */ { "", LMP_LSTO }, /* Bit 1 */ { "", LMP_INQ_TX_PWR }, /* Bit 1 */ { "", LMP_EPC }, /* Bit 2 */ { "", 0x08 }, /* Bit 3 */ { "", 0x10 }, /* Bit 4 */ { "", 0x20 }, /* Bit 5 */ { "", 0x40 }, /* Bit 6 */ { "",LMP_EXT_FEAT }, /* Bit 7 */ { NULL } }, }; char *lmp_featurestostr(uint8_t *features, char *pref, int width) { unsigned int maxwidth = width - 1; char *off, *ptr, *str; int i, size = 10; for (i = 0; i < 8; i++) { hci_map *m = lmp_features_map[i]; while (m->str) { if (m->val & features[i]) size += strlen(m->str) + (pref ? strlen(pref) : 0) + 1; m++; } } str = bt_malloc(size); if (!str) return NULL; ptr = str; *ptr = '\0'; if (pref) ptr += sprintf(ptr, "%s", pref); off = ptr; for (i = 0; i < 8; i++) { hci_map *m = lmp_features_map[i]; while (m->str) { if (m->val & features[i]) { if (strlen(off) + strlen(m->str) > maxwidth) { ptr += sprintf(ptr, "\n%s", pref ? pref : ""); off = ptr; } ptr += sprintf(ptr, "%s ", m->str); } m++; } } return str; } /* HCI functions that do not require open device */ int hci_for_each_dev(int flag, int (*func)(int dd, int dev_id, long arg), long arg) { struct hci_dev_list_req *dl; struct hci_dev_req *dr; int dev_id = -1; int i, sk, err = 0; sk = socket(AF_BLUETOOTH, SOCK_RAW, BTPROTO_HCI); if (sk < 0) return -1; dl = malloc(HCI_MAX_DEV * sizeof(*dr) + sizeof(*dl)); if (!dl) { err = errno; goto done; } memset(dl, 0, HCI_MAX_DEV * sizeof(*dr) + sizeof(*dl)); dl->dev_num = HCI_MAX_DEV; dr = dl->dev_req; if (ioctl(sk, HCIGETDEVLIST, (void *) dl) < 0) { err = errno; goto free; } for (i = 0; i < dl->dev_num; i++, dr++) { if (hci_test_bit(flag, &dr->dev_opt)) if (!func || func(sk, dr->dev_id, arg)) { dev_id = dr->dev_id; break; } } if (dev_id < 0) err = ENODEV; free: free(dl); done: close(sk); errno = err; return dev_id; } static int __other_bdaddr(int dd, int dev_id, long arg) { struct hci_dev_info di = { dev_id: dev_id }; if (ioctl(dd, HCIGETDEVINFO, (void *) &di)) return 0; if (hci_test_bit(HCI_RAW, &di.flags)) return 0; return bacmp((bdaddr_t *) arg, &di.bdaddr); } static int __same_bdaddr(int dd, int dev_id, long arg) { struct hci_dev_info di = { dev_id: dev_id }; if (ioctl(dd, HCIGETDEVINFO, (void *) &di)) return 0; return !bacmp((bdaddr_t *) arg, &di.bdaddr); } int hci_get_route(bdaddr_t *bdaddr) { return hci_for_each_dev(HCI_UP, __other_bdaddr, (long) (bdaddr ? bdaddr : BDADDR_ANY)); } int hci_devid(const char *str) { bdaddr_t ba; int id = -1; if (!strncmp(str, "hci", 3) && strlen(str) >= 4) { id = atoi(str + 3); if (hci_devba(id, &ba) < 0) return -1; } else { errno = ENODEV; str2ba(str, &ba); id = hci_for_each_dev(HCI_UP, __same_bdaddr, (long) &ba); } return id; } int hci_devinfo(int dev_id, struct hci_dev_info *di) { int dd, err, ret; dd = socket(AF_BLUETOOTH, SOCK_RAW, BTPROTO_HCI); if (dd < 0) return dd; memset(di, 0, sizeof(struct hci_dev_info)); di->dev_id = dev_id; ret = ioctl(dd, HCIGETDEVINFO, (void *) di); err = errno; close(dd); errno = err; return ret; } int hci_devba(int dev_id, bdaddr_t *bdaddr) { struct hci_dev_info di; memset(&di, 0, sizeof(di)); if (hci_devinfo(dev_id, &di)) return -1; if (!hci_test_bit(HCI_UP, &di.flags)) { errno = ENETDOWN; return -1; } bacpy(bdaddr, &di.bdaddr); return 0; } int hci_inquiry(int dev_id, int len, int nrsp, const uint8_t *lap, inquiry_info **ii, long flags) { struct hci_inquiry_req *ir; uint8_t num_rsp = nrsp; void *buf; int dd, size, err, ret = -1; if (nrsp <= 0) { num_rsp = 0; nrsp = 255; } if (dev_id < 0) { dev_id = hci_get_route(NULL); if (dev_id < 0) { errno = ENODEV; return -1; } } dd = socket(AF_BLUETOOTH, SOCK_RAW, BTPROTO_HCI); if (dd < 0) return dd; buf = malloc(sizeof(*ir) + (sizeof(inquiry_info) * (nrsp))); if (!buf) goto done; ir = buf; ir->dev_id = dev_id; ir->num_rsp = num_rsp; ir->length = len; ir->flags = flags; if (lap) { memcpy(ir->lap, lap, 3); } else { ir->lap[0] = 0x33; ir->lap[1] = 0x8b; ir->lap[2] = 0x9e; } ret = ioctl(dd, HCIINQUIRY, (unsigned long) buf); if (ret < 0) goto free; size = sizeof(inquiry_info) * ir->num_rsp; if (!*ii) *ii = malloc(size); if (*ii) { memcpy((void *) *ii, buf + sizeof(*ir), size); ret = ir->num_rsp; } else ret = -1; free: free(buf); done: err = errno; close(dd); errno = err; return ret; } /* Open HCI device. * Returns device descriptor (dd). */ int hci_open_dev(int dev_id) { struct sockaddr_hci a; int dd, err; /* Create HCI socket */ dd = socket(AF_BLUETOOTH, SOCK_RAW, BTPROTO_HCI); if (dd < 0) return dd; /* Bind socket to the HCI device */ memset(&a, 0, sizeof(a)); a.hci_family = AF_BLUETOOTH; a.hci_dev = dev_id; if (bind(dd, (struct sockaddr *) &a, sizeof(a)) < 0) goto failed; return dd; failed: err = errno; close(dd); errno = err; return -1; } int hci_close_dev(int dd) { return close(dd); } /* HCI functions that require open device * dd - Device descriptor returned by hci_open_dev. */ int hci_send_cmd(int dd, uint16_t ogf, uint16_t ocf, uint8_t plen, void *param) { uint8_t type = HCI_COMMAND_PKT; hci_command_hdr hc; struct iovec iv[3]; int ivn; hc.opcode = htobs(cmd_opcode_pack(ogf, ocf)); hc.plen= plen; iv[0].iov_base = &type; iv[0].iov_len = 1; iv[1].iov_base = &hc; iv[1].iov_len = HCI_COMMAND_HDR_SIZE; ivn = 2; if (plen) { iv[2].iov_base = param; iv[2].iov_len = plen; ivn = 3; } while (writev(dd, iv, ivn) < 0) { if (errno == EAGAIN || errno == EINTR) continue; return -1; } return 0; } int hci_send_req(int dd, struct hci_request *r, int to) { unsigned char buf[HCI_MAX_EVENT_SIZE], *ptr; uint16_t opcode = htobs(cmd_opcode_pack(r->ogf, r->ocf)); struct hci_filter nf, of; socklen_t olen; hci_event_hdr *hdr; int err, try; olen = sizeof(of); if (getsockopt(dd, SOL_HCI, HCI_FILTER, &of, &olen) < 0) return -1; hci_filter_clear(&nf); hci_filter_set_ptype(HCI_EVENT_PKT, &nf); hci_filter_set_event(EVT_CMD_STATUS, &nf); hci_filter_set_event(EVT_CMD_COMPLETE, &nf); hci_filter_set_event(EVT_LE_META_EVENT, &nf); hci_filter_set_event(r->event, &nf); hci_filter_set_opcode(opcode, &nf); if (setsockopt(dd, SOL_HCI, HCI_FILTER, &nf, sizeof(nf)) < 0) return -1; if (hci_send_cmd(dd, r->ogf, r->ocf, r->clen, r->cparam) < 0) goto failed; try = 10; while (try--) { evt_cmd_complete *cc; evt_cmd_status *cs; evt_remote_name_req_complete *rn; evt_le_meta_event *me; remote_name_req_cp *cp; int len; if (to) { struct pollfd p; int n; p.fd = dd; p.events = POLLIN; while ((n = poll(&p, 1, to)) < 0) { if (errno == EAGAIN || errno == EINTR) continue; goto failed; } if (!n) { errno = ETIMEDOUT; goto failed; } to -= 10; if (to < 0) to = 0; } while ((len = read(dd, buf, sizeof(buf))) < 0) { if (errno == EAGAIN || errno == EINTR) continue; goto failed; } hdr = (void *) (buf + 1); ptr = buf + (1 + HCI_EVENT_HDR_SIZE); len -= (1 + HCI_EVENT_HDR_SIZE); switch (hdr->evt) { case EVT_CMD_STATUS: cs = (void *) ptr; if (cs->opcode != opcode) continue; if (r->event != EVT_CMD_STATUS) { if (cs->status) { errno = EIO; goto failed; } break; } r->rlen = MIN(len, r->rlen); memcpy(r->rparam, ptr, r->rlen); goto done; case EVT_CMD_COMPLETE: cc = (void *) ptr; if (cc->opcode != opcode) continue; ptr += EVT_CMD_COMPLETE_SIZE; len -= EVT_CMD_COMPLETE_SIZE; r->rlen = MIN(len, r->rlen); memcpy(r->rparam, ptr, r->rlen); goto done; case EVT_REMOTE_NAME_REQ_COMPLETE: if (hdr->evt != r->event) break; rn = (void *) ptr; cp = r->cparam; if (bacmp(&rn->bdaddr, &cp->bdaddr)) continue; r->rlen = MIN(len, r->rlen); memcpy(r->rparam, ptr, r->rlen); goto done; case EVT_LE_META_EVENT: me = (void *) ptr; if (me->subevent != r->event) continue; len -= 1; r->rlen = MIN(len, r->rlen); memcpy(r->rparam, me->data, r->rlen); goto done; default: if (hdr->evt != r->event) break; r->rlen = MIN(len, r->rlen); memcpy(r->rparam, ptr, r->rlen); goto done; } } errno = ETIMEDOUT; failed: err = errno; setsockopt(dd, SOL_HCI, HCI_FILTER, &of, sizeof(of)); errno = err; return -1; done: setsockopt(dd, SOL_HCI, HCI_FILTER, &of, sizeof(of)); return 0; } int hci_create_connection(int dd, const bdaddr_t *bdaddr, uint16_t ptype, uint16_t clkoffset, uint8_t rswitch, uint16_t *handle, int to) { evt_conn_complete rp; create_conn_cp cp; struct hci_request rq; memset(&cp, 0, sizeof(cp)); bacpy(&cp.bdaddr, bdaddr); cp.pkt_type = ptype; cp.pscan_rep_mode = 0x02; cp.clock_offset = clkoffset; cp.role_switch = rswitch; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_LINK_CTL; rq.ocf = OCF_CREATE_CONN; rq.event = EVT_CONN_COMPLETE; rq.cparam = &cp; rq.clen = CREATE_CONN_CP_SIZE; rq.rparam = &rp; rq.rlen = EVT_CONN_COMPLETE_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } *handle = rp.handle; return 0; } int hci_disconnect(int dd, uint16_t handle, uint8_t reason, int to) { evt_disconn_complete rp; disconnect_cp cp; struct hci_request rq; memset(&cp, 0, sizeof(cp)); cp.handle = handle; cp.reason = reason; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_LINK_CTL; rq.ocf = OCF_DISCONNECT; rq.event = EVT_DISCONN_COMPLETE; rq.cparam = &cp; rq.clen = DISCONNECT_CP_SIZE; rq.rparam = &rp; rq.rlen = EVT_DISCONN_COMPLETE_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } return 0; } int hci_le_add_white_list(int dd, const bdaddr_t *bdaddr, uint8_t type, int to) { struct hci_request rq; le_add_device_to_white_list_cp cp; uint8_t status; memset(&cp, 0, sizeof(cp)); cp.bdaddr_type = type; bacpy(&cp.bdaddr, bdaddr); memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_ADD_DEVICE_TO_WHITE_LIST; rq.cparam = &cp; rq.clen = LE_ADD_DEVICE_TO_WHITE_LIST_CP_SIZE; rq.rparam = &status; rq.rlen = 1; if (hci_send_req(dd, &rq, to) < 0) return -1; if (status) { errno = EIO; return -1; } return 0; } int hci_le_rm_white_list(int dd, const bdaddr_t *bdaddr, uint8_t type, int to) { struct hci_request rq; le_remove_device_from_white_list_cp cp; uint8_t status; memset(&cp, 0, sizeof(cp)); cp.bdaddr_type = type; bacpy(&cp.bdaddr, bdaddr); memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_REMOVE_DEVICE_FROM_WHITE_LIST; rq.cparam = &cp; rq.clen = LE_REMOVE_DEVICE_FROM_WHITE_LIST_CP_SIZE; rq.rparam = &status; rq.rlen = 1; if (hci_send_req(dd, &rq, to) < 0) return -1; if (status) { errno = EIO; return -1; } return 0; } int hci_le_read_white_list_size(int dd, uint8_t *size, int to) { struct hci_request rq; le_read_white_list_size_rp rp; memset(&rp, 0, sizeof(rp)); memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_READ_WHITE_LIST_SIZE; rq.rparam = &rp; rq.rlen = LE_READ_WHITE_LIST_SIZE_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } if (size) *size = rp.size; return 0; } int hci_le_clear_white_list(int dd, int to) { struct hci_request rq; uint8_t status; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_CLEAR_WHITE_LIST; rq.rparam = &status; rq.rlen = 1; if (hci_send_req(dd, &rq, to) < 0) return -1; if (status) { errno = EIO; return -1; } return 0; } int hci_read_local_name(int dd, int len, char *name, int to) { read_local_name_rp rp; struct hci_request rq; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_READ_LOCAL_NAME; rq.rparam = &rp; rq.rlen = READ_LOCAL_NAME_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } rp.name[247] = '\0'; strncpy(name, (char *) rp.name, len); return 0; } int hci_write_local_name(int dd, const char *name, int to) { change_local_name_cp cp; struct hci_request rq; memset(&cp, 0, sizeof(cp)); strncpy((char *) cp.name, name, sizeof(cp.name)); memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_CHANGE_LOCAL_NAME; rq.cparam = &cp; rq.clen = CHANGE_LOCAL_NAME_CP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; return 0; } int hci_read_remote_name_with_clock_offset(int dd, const bdaddr_t *bdaddr, uint8_t pscan_rep_mode, uint16_t clkoffset, int len, char *name, int to) { evt_remote_name_req_complete rn; remote_name_req_cp cp; struct hci_request rq; memset(&cp, 0, sizeof(cp)); bacpy(&cp.bdaddr, bdaddr); cp.pscan_rep_mode = pscan_rep_mode; cp.clock_offset = clkoffset; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_LINK_CTL; rq.ocf = OCF_REMOTE_NAME_REQ; rq.cparam = &cp; rq.clen = REMOTE_NAME_REQ_CP_SIZE; rq.event = EVT_REMOTE_NAME_REQ_COMPLETE; rq.rparam = &rn; rq.rlen = EVT_REMOTE_NAME_REQ_COMPLETE_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rn.status) { errno = EIO; return -1; } rn.name[247] = '\0'; strncpy(name, (char *) rn.name, len); return 0; } int hci_read_remote_name(int dd, const bdaddr_t *bdaddr, int len, char *name, int to) { return hci_read_remote_name_with_clock_offset(dd, bdaddr, 0x02, 0x0000, len, name, to); } int hci_read_remote_name_cancel(int dd, const bdaddr_t *bdaddr, int to) { remote_name_req_cancel_cp cp; struct hci_request rq; memset(&cp, 0, sizeof(cp)); bacpy(&cp.bdaddr, bdaddr); memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_LINK_CTL; rq.ocf = OCF_REMOTE_NAME_REQ_CANCEL; rq.cparam = &cp; rq.clen = REMOTE_NAME_REQ_CANCEL_CP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; return 0; } int hci_read_remote_version(int dd, uint16_t handle, struct hci_version *ver, int to) { evt_read_remote_version_complete rp; read_remote_version_cp cp; struct hci_request rq; memset(&cp, 0, sizeof(cp)); cp.handle = handle; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_LINK_CTL; rq.ocf = OCF_READ_REMOTE_VERSION; rq.event = EVT_READ_REMOTE_VERSION_COMPLETE; rq.cparam = &cp; rq.clen = READ_REMOTE_VERSION_CP_SIZE; rq.rparam = &rp; rq.rlen = EVT_READ_REMOTE_VERSION_COMPLETE_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } ver->manufacturer = btohs(rp.manufacturer); ver->lmp_ver = rp.lmp_ver; ver->lmp_subver = btohs(rp.lmp_subver); return 0; } int hci_read_remote_features(int dd, uint16_t handle, uint8_t *features, int to) { evt_read_remote_features_complete rp; read_remote_features_cp cp; struct hci_request rq; memset(&cp, 0, sizeof(cp)); cp.handle = handle; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_LINK_CTL; rq.ocf = OCF_READ_REMOTE_FEATURES; rq.event = EVT_READ_REMOTE_FEATURES_COMPLETE; rq.cparam = &cp; rq.clen = READ_REMOTE_FEATURES_CP_SIZE; rq.rparam = &rp; rq.rlen = EVT_READ_REMOTE_FEATURES_COMPLETE_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } if (features) memcpy(features, rp.features, 8); return 0; } int hci_read_remote_ext_features(int dd, uint16_t handle, uint8_t page, uint8_t *max_page, uint8_t *features, int to) { evt_read_remote_ext_features_complete rp; read_remote_ext_features_cp cp; struct hci_request rq; memset(&cp, 0, sizeof(cp)); cp.handle = handle; cp.page_num = page; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_LINK_CTL; rq.ocf = OCF_READ_REMOTE_EXT_FEATURES; rq.event = EVT_READ_REMOTE_EXT_FEATURES_COMPLETE; rq.cparam = &cp; rq.clen = READ_REMOTE_EXT_FEATURES_CP_SIZE; rq.rparam = &rp; rq.rlen = EVT_READ_REMOTE_EXT_FEATURES_COMPLETE_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } if (max_page) *max_page = rp.max_page_num; if (features) memcpy(features, rp.features, 8); return 0; } int hci_read_clock_offset(int dd, uint16_t handle, uint16_t *clkoffset, int to) { evt_read_clock_offset_complete rp; read_clock_offset_cp cp; struct hci_request rq; memset(&cp, 0, sizeof(cp)); cp.handle = handle; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_LINK_CTL; rq.ocf = OCF_READ_CLOCK_OFFSET; rq.event = EVT_READ_CLOCK_OFFSET_COMPLETE; rq.cparam = &cp; rq.clen = READ_CLOCK_OFFSET_CP_SIZE; rq.rparam = &rp; rq.rlen = EVT_READ_CLOCK_OFFSET_COMPLETE_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } *clkoffset = rp.clock_offset; return 0; } int hci_read_local_version(int dd, struct hci_version *ver, int to) { read_local_version_rp rp; struct hci_request rq; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_INFO_PARAM; rq.ocf = OCF_READ_LOCAL_VERSION; rq.rparam = &rp; rq.rlen = READ_LOCAL_VERSION_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } ver->manufacturer = btohs(rp.manufacturer); ver->hci_ver = rp.hci_ver; ver->hci_rev = btohs(rp.hci_rev); ver->lmp_ver = rp.lmp_ver; ver->lmp_subver = btohs(rp.lmp_subver); return 0; } int hci_read_local_commands(int dd, uint8_t *commands, int to) { read_local_commands_rp rp; struct hci_request rq; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_INFO_PARAM; rq.ocf = OCF_READ_LOCAL_COMMANDS; rq.rparam = &rp; rq.rlen = READ_LOCAL_COMMANDS_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } if (commands) memcpy(commands, rp.commands, 64); return 0; } int hci_read_local_features(int dd, uint8_t *features, int to) { read_local_features_rp rp; struct hci_request rq; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_INFO_PARAM; rq.ocf = OCF_READ_LOCAL_FEATURES; rq.rparam = &rp; rq.rlen = READ_LOCAL_FEATURES_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } if (features) memcpy(features, rp.features, 8); return 0; } int hci_read_local_ext_features(int dd, uint8_t page, uint8_t *max_page, uint8_t *features, int to) { read_local_ext_features_cp cp; read_local_ext_features_rp rp; struct hci_request rq; cp.page_num = page; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_INFO_PARAM; rq.ocf = OCF_READ_LOCAL_EXT_FEATURES; rq.cparam = &cp; rq.clen = READ_LOCAL_EXT_FEATURES_CP_SIZE; rq.rparam = &rp; rq.rlen = READ_LOCAL_EXT_FEATURES_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } if (max_page) *max_page = rp.max_page_num; if (features) memcpy(features, rp.features, 8); return 0; } int hci_read_bd_addr(int dd, bdaddr_t *bdaddr, int to) { read_bd_addr_rp rp; struct hci_request rq; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_INFO_PARAM; rq.ocf = OCF_READ_BD_ADDR; rq.rparam = &rp; rq.rlen = READ_BD_ADDR_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } if (bdaddr) bacpy(bdaddr, &rp.bdaddr); return 0; } int hci_read_class_of_dev(int dd, uint8_t *cls, int to) { read_class_of_dev_rp rp; struct hci_request rq; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_READ_CLASS_OF_DEV; rq.rparam = &rp; rq.rlen = READ_CLASS_OF_DEV_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } memcpy(cls, rp.dev_class, 3); return 0; } int hci_write_class_of_dev(int dd, uint32_t cls, int to) { write_class_of_dev_cp cp; struct hci_request rq; memset(&rq, 0, sizeof(rq)); cp.dev_class[0] = cls & 0xff; cp.dev_class[1] = (cls >> 8) & 0xff; cp.dev_class[2] = (cls >> 16) & 0xff; rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_WRITE_CLASS_OF_DEV; rq.cparam = &cp; rq.clen = WRITE_CLASS_OF_DEV_CP_SIZE; return hci_send_req(dd, &rq, to); } int hci_read_voice_setting(int dd, uint16_t *vs, int to) { read_voice_setting_rp rp; struct hci_request rq; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_READ_VOICE_SETTING; rq.rparam = &rp; rq.rlen = READ_VOICE_SETTING_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } *vs = rp.voice_setting; return 0; } int hci_write_voice_setting(int dd, uint16_t vs, int to) { write_voice_setting_cp cp; struct hci_request rq; memset(&rq, 0, sizeof(rq)); cp.voice_setting = vs; rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_WRITE_VOICE_SETTING; rq.cparam = &cp; rq.clen = WRITE_VOICE_SETTING_CP_SIZE; return hci_send_req(dd, &rq, to); } int hci_read_current_iac_lap(int dd, uint8_t *num_iac, uint8_t *lap, int to) { read_current_iac_lap_rp rp; struct hci_request rq; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_READ_CURRENT_IAC_LAP; rq.rparam = &rp; rq.rlen = READ_CURRENT_IAC_LAP_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } *num_iac = rp.num_current_iac; memcpy(lap, rp.lap, rp.num_current_iac * 3); return 0; } int hci_write_current_iac_lap(int dd, uint8_t num_iac, uint8_t *lap, int to) { write_current_iac_lap_cp cp; struct hci_request rq; memset(&cp, 0, sizeof(cp)); cp.num_current_iac = num_iac; memcpy(&cp.lap, lap, num_iac * 3); memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_WRITE_CURRENT_IAC_LAP; rq.cparam = &cp; rq.clen = num_iac * 3 + 1; return hci_send_req(dd, &rq, to); } int hci_read_stored_link_key(int dd, bdaddr_t *bdaddr, uint8_t all, int to) { read_stored_link_key_cp cp; struct hci_request rq; memset(&cp, 0, sizeof(cp)); bacpy(&cp.bdaddr, bdaddr); cp.read_all = all; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_READ_STORED_LINK_KEY; rq.cparam = &cp; rq.clen = READ_STORED_LINK_KEY_CP_SIZE; return hci_send_req(dd, &rq, to); } int hci_write_stored_link_key(int dd, bdaddr_t *bdaddr, uint8_t *key, int to) { unsigned char cp[WRITE_STORED_LINK_KEY_CP_SIZE + 6 + 16]; struct hci_request rq; memset(&cp, 0, sizeof(cp)); cp[0] = 1; bacpy((bdaddr_t *) (cp + 1), bdaddr); memcpy(cp + 7, key, 16); memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_WRITE_STORED_LINK_KEY; rq.cparam = &cp; rq.clen = WRITE_STORED_LINK_KEY_CP_SIZE + 6 + 16; return hci_send_req(dd, &rq, to); } int hci_delete_stored_link_key(int dd, bdaddr_t *bdaddr, uint8_t all, int to) { delete_stored_link_key_cp cp; struct hci_request rq; memset(&cp, 0, sizeof(cp)); bacpy(&cp.bdaddr, bdaddr); cp.delete_all = all; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_DELETE_STORED_LINK_KEY; rq.cparam = &cp; rq.clen = DELETE_STORED_LINK_KEY_CP_SIZE; return hci_send_req(dd, &rq, to); } int hci_authenticate_link(int dd, uint16_t handle, int to) { auth_requested_cp cp; evt_auth_complete rp; struct hci_request rq; cp.handle = handle; rq.ogf = OGF_LINK_CTL; rq.ocf = OCF_AUTH_REQUESTED; rq.event = EVT_AUTH_COMPLETE; rq.cparam = &cp; rq.clen = AUTH_REQUESTED_CP_SIZE; rq.rparam = &rp; rq.rlen = EVT_AUTH_COMPLETE_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } return 0; } int hci_encrypt_link(int dd, uint16_t handle, uint8_t encrypt, int to) { set_conn_encrypt_cp cp; evt_encrypt_change rp; struct hci_request rq; cp.handle = handle; cp.encrypt = encrypt; rq.ogf = OGF_LINK_CTL; rq.ocf = OCF_SET_CONN_ENCRYPT; rq.event = EVT_ENCRYPT_CHANGE; rq.cparam = &cp; rq.clen = SET_CONN_ENCRYPT_CP_SIZE; rq.rparam = &rp; rq.rlen = EVT_ENCRYPT_CHANGE_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } return 0; } int hci_change_link_key(int dd, uint16_t handle, int to) { change_conn_link_key_cp cp; evt_change_conn_link_key_complete rp; struct hci_request rq; cp.handle = handle; rq.ogf = OGF_LINK_CTL; rq.ocf = OCF_CHANGE_CONN_LINK_KEY; rq.event = EVT_CHANGE_CONN_LINK_KEY_COMPLETE; rq.cparam = &cp; rq.clen = CHANGE_CONN_LINK_KEY_CP_SIZE; rq.rparam = &rp; rq.rlen = EVT_CHANGE_CONN_LINK_KEY_COMPLETE_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } return 0; } int hci_switch_role(int dd, bdaddr_t *bdaddr, uint8_t role, int to) { switch_role_cp cp; evt_role_change rp; struct hci_request rq; bacpy(&cp.bdaddr, bdaddr); cp.role = role; rq.ogf = OGF_LINK_POLICY; rq.ocf = OCF_SWITCH_ROLE; rq.cparam = &cp; rq.clen = SWITCH_ROLE_CP_SIZE; rq.rparam = &rp; rq.rlen = EVT_ROLE_CHANGE_SIZE; rq.event = EVT_ROLE_CHANGE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } return 0; } int hci_park_mode(int dd, uint16_t handle, uint16_t max_interval, uint16_t min_interval, int to) { park_mode_cp cp; evt_mode_change rp; struct hci_request rq; memset(&cp, 0, sizeof (cp)); cp.handle = handle; cp.max_interval = max_interval; cp.min_interval = min_interval; memset(&rq, 0, sizeof (rq)); rq.ogf = OGF_LINK_POLICY; rq.ocf = OCF_PARK_MODE; rq.event = EVT_MODE_CHANGE; rq.cparam = &cp; rq.clen = PARK_MODE_CP_SIZE; rq.rparam = &rp; rq.rlen = EVT_MODE_CHANGE_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } return 0; } int hci_exit_park_mode(int dd, uint16_t handle, int to) { exit_park_mode_cp cp; evt_mode_change rp; struct hci_request rq; memset(&cp, 0, sizeof (cp)); cp.handle = handle; memset (&rq, 0, sizeof (rq)); rq.ogf = OGF_LINK_POLICY; rq.ocf = OCF_EXIT_PARK_MODE; rq.event = EVT_MODE_CHANGE; rq.cparam = &cp; rq.clen = EXIT_PARK_MODE_CP_SIZE; rq.rparam = &rp; rq.rlen = EVT_MODE_CHANGE_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } return 0; } int hci_read_inquiry_scan_type(int dd, uint8_t *type, int to) { read_inquiry_scan_type_rp rp; struct hci_request rq; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_READ_INQUIRY_SCAN_TYPE; rq.rparam = &rp; rq.rlen = READ_INQUIRY_SCAN_TYPE_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } *type = rp.type; return 0; } int hci_write_inquiry_scan_type(int dd, uint8_t type, int to) { write_inquiry_scan_type_cp cp; write_inquiry_scan_type_rp rp; struct hci_request rq; memset(&cp, 0, sizeof(cp)); cp.type = type; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_WRITE_INQUIRY_SCAN_TYPE; rq.cparam = &cp; rq.clen = WRITE_INQUIRY_SCAN_TYPE_CP_SIZE; rq.rparam = &rp; rq.rlen = WRITE_INQUIRY_SCAN_TYPE_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } return 0; } int hci_read_inquiry_mode(int dd, uint8_t *mode, int to) { read_inquiry_mode_rp rp; struct hci_request rq; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_READ_INQUIRY_MODE; rq.rparam = &rp; rq.rlen = READ_INQUIRY_MODE_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } *mode = rp.mode; return 0; } int hci_write_inquiry_mode(int dd, uint8_t mode, int to) { write_inquiry_mode_cp cp; write_inquiry_mode_rp rp; struct hci_request rq; memset(&cp, 0, sizeof(cp)); cp.mode = mode; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_WRITE_INQUIRY_MODE; rq.cparam = &cp; rq.clen = WRITE_INQUIRY_MODE_CP_SIZE; rq.rparam = &rp; rq.rlen = WRITE_INQUIRY_MODE_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } return 0; } int hci_read_afh_mode(int dd, uint8_t *mode, int to) { read_afh_mode_rp rp; struct hci_request rq; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_READ_AFH_MODE; rq.rparam = &rp; rq.rlen = READ_AFH_MODE_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } *mode = rp.mode; return 0; } int hci_write_afh_mode(int dd, uint8_t mode, int to) { write_afh_mode_cp cp; write_afh_mode_rp rp; struct hci_request rq; memset(&cp, 0, sizeof(cp)); cp.mode = mode; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_WRITE_AFH_MODE; rq.cparam = &cp; rq.clen = WRITE_AFH_MODE_CP_SIZE; rq.rparam = &rp; rq.rlen = WRITE_AFH_MODE_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } return 0; } int hci_read_ext_inquiry_response(int dd, uint8_t *fec, uint8_t *data, int to) { read_ext_inquiry_response_rp rp; struct hci_request rq; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_READ_EXT_INQUIRY_RESPONSE; rq.rparam = &rp; rq.rlen = READ_EXT_INQUIRY_RESPONSE_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } *fec = rp.fec; memcpy(data, rp.data, HCI_MAX_EIR_LENGTH); return 0; } int hci_write_ext_inquiry_response(int dd, uint8_t fec, uint8_t *data, int to) { write_ext_inquiry_response_cp cp; write_ext_inquiry_response_rp rp; struct hci_request rq; memset(&cp, 0, sizeof(cp)); cp.fec = fec; memcpy(cp.data, data, HCI_MAX_EIR_LENGTH); memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_WRITE_EXT_INQUIRY_RESPONSE; rq.cparam = &cp; rq.clen = WRITE_EXT_INQUIRY_RESPONSE_CP_SIZE; rq.rparam = &rp; rq.rlen = WRITE_EXT_INQUIRY_RESPONSE_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } return 0; } int hci_read_simple_pairing_mode(int dd, uint8_t *mode, int to) { read_simple_pairing_mode_rp rp; struct hci_request rq; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_READ_SIMPLE_PAIRING_MODE; rq.rparam = &rp; rq.rlen = READ_SIMPLE_PAIRING_MODE_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } *mode = rp.mode; return 0; } int hci_write_simple_pairing_mode(int dd, uint8_t mode, int to) { write_simple_pairing_mode_cp cp; write_simple_pairing_mode_rp rp; struct hci_request rq; memset(&cp, 0, sizeof(cp)); cp.mode = mode; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_WRITE_SIMPLE_PAIRING_MODE; rq.cparam = &cp; rq.clen = WRITE_SIMPLE_PAIRING_MODE_CP_SIZE; rq.rparam = &rp; rq.rlen = WRITE_SIMPLE_PAIRING_MODE_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } return 0; } int hci_read_local_oob_data(int dd, uint8_t *hash, uint8_t *randomizer, int to) { read_local_oob_data_rp rp; struct hci_request rq; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_READ_LOCAL_OOB_DATA; rq.rparam = &rp; rq.rlen = READ_LOCAL_OOB_DATA_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } memcpy(hash, rp.hash, 16); memcpy(randomizer, rp.randomizer, 16); return 0; } int hci_read_inq_response_tx_power_level(int dd, int8_t *level, int to) { read_inq_response_tx_power_level_rp rp; struct hci_request rq; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_READ_INQ_RESPONSE_TX_POWER_LEVEL; rq.rparam = &rp; rq.rlen = READ_INQ_RESPONSE_TX_POWER_LEVEL_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } *level = rp.level; return 0; } int hci_read_inquiry_transmit_power_level(int dd, int8_t *level, int to) { return hci_read_inq_response_tx_power_level(dd, level, to); } int hci_write_inquiry_transmit_power_level(int dd, int8_t level, int to) { write_inquiry_transmit_power_level_cp cp; write_inquiry_transmit_power_level_rp rp; struct hci_request rq; memset(&cp, 0, sizeof(cp)); cp.level = level; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_WRITE_INQUIRY_TRANSMIT_POWER_LEVEL; rq.cparam = &cp; rq.clen = WRITE_INQUIRY_TRANSMIT_POWER_LEVEL_CP_SIZE; rq.rparam = &rp; rq.rlen = WRITE_INQUIRY_TRANSMIT_POWER_LEVEL_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } return 0; } int hci_read_transmit_power_level(int dd, uint16_t handle, uint8_t type, int8_t *level, int to) { read_transmit_power_level_cp cp; read_transmit_power_level_rp rp; struct hci_request rq; memset(&cp, 0, sizeof(cp)); cp.handle = handle; cp.type = type; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_READ_TRANSMIT_POWER_LEVEL; rq.cparam = &cp; rq.clen = READ_TRANSMIT_POWER_LEVEL_CP_SIZE; rq.rparam = &rp; rq.rlen = READ_TRANSMIT_POWER_LEVEL_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } *level = rp.level; return 0; } int hci_read_link_policy(int dd, uint16_t handle, uint16_t *policy, int to) { read_link_policy_rp rp; struct hci_request rq; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_LINK_POLICY; rq.ocf = OCF_READ_LINK_POLICY; rq.cparam = &handle; rq.clen = 2; rq.rparam = &rp; rq.rlen = READ_LINK_POLICY_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } *policy = rp.policy; return 0; } int hci_write_link_policy(int dd, uint16_t handle, uint16_t policy, int to) { write_link_policy_cp cp; write_link_policy_rp rp; struct hci_request rq; memset(&cp, 0, sizeof(cp)); cp.handle = handle; cp.policy = policy; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_LINK_POLICY; rq.ocf = OCF_WRITE_LINK_POLICY; rq.cparam = &cp; rq.clen = WRITE_LINK_POLICY_CP_SIZE; rq.rparam = &rp; rq.rlen = WRITE_LINK_POLICY_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } return 0; } int hci_read_link_supervision_timeout(int dd, uint16_t handle, uint16_t *timeout, int to) { read_link_supervision_timeout_rp rp; struct hci_request rq; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_READ_LINK_SUPERVISION_TIMEOUT; rq.cparam = &handle; rq.clen = 2; rq.rparam = &rp; rq.rlen = READ_LINK_SUPERVISION_TIMEOUT_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } *timeout = rp.timeout; return 0; } int hci_write_link_supervision_timeout(int dd, uint16_t handle, uint16_t timeout, int to) { write_link_supervision_timeout_cp cp; write_link_supervision_timeout_rp rp; struct hci_request rq; memset(&cp, 0, sizeof(cp)); cp.handle = handle; cp.timeout = timeout; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_WRITE_LINK_SUPERVISION_TIMEOUT; rq.cparam = &cp; rq.clen = WRITE_LINK_SUPERVISION_TIMEOUT_CP_SIZE; rq.rparam = &rp; rq.rlen = WRITE_LINK_SUPERVISION_TIMEOUT_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } return 0; } int hci_set_afh_classification(int dd, uint8_t *map, int to) { set_afh_classification_cp cp; set_afh_classification_rp rp; struct hci_request rq; memset(&cp, 0, sizeof(cp)); memcpy(cp.map, map, 10); memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_HOST_CTL; rq.ocf = OCF_SET_AFH_CLASSIFICATION; rq.cparam = &cp; rq.clen = SET_AFH_CLASSIFICATION_CP_SIZE; rq.rparam = &rp; rq.rlen = SET_AFH_CLASSIFICATION_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } return 0; } int hci_read_link_quality(int dd, uint16_t handle, uint8_t *link_quality, int to) { read_link_quality_rp rp; struct hci_request rq; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_STATUS_PARAM; rq.ocf = OCF_READ_LINK_QUALITY; rq.cparam = &handle; rq.clen = 2; rq.rparam = &rp; rq.rlen = READ_LINK_QUALITY_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } *link_quality = rp.link_quality; return 0; } int hci_read_rssi(int dd, uint16_t handle, int8_t *rssi, int to) { read_rssi_rp rp; struct hci_request rq; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_STATUS_PARAM; rq.ocf = OCF_READ_RSSI; rq.cparam = &handle; rq.clen = 2; rq.rparam = &rp; rq.rlen = READ_RSSI_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } *rssi = rp.rssi; return 0; } int hci_read_afh_map(int dd, uint16_t handle, uint8_t *mode, uint8_t *map, int to) { read_afh_map_rp rp; struct hci_request rq; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_STATUS_PARAM; rq.ocf = OCF_READ_AFH_MAP; rq.cparam = &handle; rq.clen = 2; rq.rparam = &rp; rq.rlen = READ_AFH_MAP_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } *mode = rp.mode; memcpy(map, rp.map, 10); return 0; } int hci_read_clock(int dd, uint16_t handle, uint8_t which, uint32_t *clock, uint16_t *accuracy, int to) { read_clock_cp cp; read_clock_rp rp; struct hci_request rq; memset(&cp, 0, sizeof(cp)); cp.handle = handle; cp.which_clock = which; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_STATUS_PARAM; rq.ocf = OCF_READ_CLOCK; rq.cparam = &cp; rq.clen = READ_CLOCK_CP_SIZE; rq.rparam = &rp; rq.rlen = READ_CLOCK_RP_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (rp.status) { errno = EIO; return -1; } *clock = rp.clock; *accuracy = rp.accuracy; return 0; } int hci_le_set_scan_enable(int dd, uint8_t enable, uint8_t filter_dup, int to) { struct hci_request rq; le_set_scan_enable_cp scan_cp; uint8_t status; memset(&scan_cp, 0, sizeof(scan_cp)); scan_cp.enable = enable; scan_cp.filter_dup = filter_dup; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_SET_SCAN_ENABLE; rq.cparam = &scan_cp; rq.clen = LE_SET_SCAN_ENABLE_CP_SIZE; rq.rparam = &status; rq.rlen = 1; if (hci_send_req(dd, &rq, to) < 0) return -1; if (status) { errno = EIO; return -1; } return 0; } int hci_le_set_scan_parameters(int dd, uint8_t type, uint16_t interval, uint16_t window, uint8_t own_type, uint8_t filter, int to) { struct hci_request rq; le_set_scan_parameters_cp param_cp; uint8_t status; memset(¶m_cp, 0, sizeof(param_cp)); param_cp.type = type; param_cp.interval = interval; param_cp.window = window; param_cp.own_bdaddr_type = own_type; param_cp.filter = filter; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_SET_SCAN_PARAMETERS; rq.cparam = ¶m_cp; rq.clen = LE_SET_SCAN_PARAMETERS_CP_SIZE; rq.rparam = &status; rq.rlen = 1; if (hci_send_req(dd, &rq, to) < 0) return -1; if (status) { errno = EIO; return -1; } return 0; } int hci_le_set_advertise_enable(int dd, uint8_t enable, int to) { struct hci_request rq; le_set_advertise_enable_cp adv_cp; uint8_t status; memset(&adv_cp, 0, sizeof(adv_cp)); adv_cp.enable = enable; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_SET_ADVERTISE_ENABLE; rq.cparam = &adv_cp; rq.clen = LE_SET_ADVERTISE_ENABLE_CP_SIZE; rq.rparam = &status; rq.rlen = 1; if (hci_send_req(dd, &rq, to) < 0) return -1; if (status) { errno = EIO; return -1; } return 0; } int hci_le_create_conn(int dd, uint16_t interval, uint16_t window, uint8_t initiator_filter, uint8_t peer_bdaddr_type, bdaddr_t peer_bdaddr, uint8_t own_bdaddr_type, uint16_t min_interval, uint16_t max_interval, uint16_t latency, uint16_t supervision_timeout, uint16_t min_ce_length, uint16_t max_ce_length, uint16_t *handle, int to) { struct hci_request rq; le_create_connection_cp create_conn_cp; evt_le_connection_complete conn_complete_rp; memset(&create_conn_cp, 0, sizeof(create_conn_cp)); create_conn_cp.interval = interval; create_conn_cp.window = window; create_conn_cp.initiator_filter = initiator_filter; create_conn_cp.peer_bdaddr_type = peer_bdaddr_type; create_conn_cp.peer_bdaddr = peer_bdaddr; create_conn_cp.own_bdaddr_type = own_bdaddr_type; create_conn_cp.min_interval = min_interval; create_conn_cp.max_interval = max_interval; create_conn_cp.latency = latency; create_conn_cp.supervision_timeout = supervision_timeout; create_conn_cp.min_ce_length = min_ce_length; create_conn_cp.max_ce_length = max_ce_length; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_CREATE_CONN; rq.event = EVT_LE_CONN_COMPLETE; rq.cparam = &create_conn_cp; rq.clen = LE_CREATE_CONN_CP_SIZE; rq.rparam = &conn_complete_rp; rq.rlen = EVT_CONN_COMPLETE_SIZE; if (hci_send_req(dd, &rq, to) < 0) return -1; if (conn_complete_rp.status) { errno = EIO; return -1; } if (handle) *handle = conn_complete_rp.handle; return 0; } int hci_le_conn_update(int dd, uint16_t handle, uint16_t min_interval, uint16_t max_interval, uint16_t latency, uint16_t supervision_timeout, int to) { evt_le_connection_update_complete evt; le_connection_update_cp cp; struct hci_request rq; memset(&cp, 0, sizeof(cp)); cp.handle = handle; cp.min_interval = min_interval; cp.max_interval = max_interval; cp.latency = latency; cp.supervision_timeout = supervision_timeout; cp.min_ce_length = htobs(0x0001); cp.max_ce_length = htobs(0x0001); memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_LE_CTL; rq.ocf = OCF_LE_CONN_UPDATE; rq.cparam = &cp; rq.clen = LE_CONN_UPDATE_CP_SIZE; rq.event = EVT_LE_CONN_UPDATE_COMPLETE; rq.rparam = &evt; rq.rlen = sizeof(evt); if (hci_send_req(dd, &rq, to) < 0) return -1; if (evt.status) { errno = EIO; return -1; } return 0; }