/* * * BlueZ - Bluetooth protocol stack for Linux * * Copyright (C) 2011-2012 Intel Corporation * Copyright (C) 2004-2010 Marcel Holtmann * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "src/shared/util.h" #include "monitor/mainloop.h" #include "monitor/bt.h" #define BTPROTO_HCI 1 struct sockaddr_hci { sa_family_t hci_family; unsigned short hci_dev; unsigned short hci_channel; }; #define HCI_CHANNEL_USER 1 static uint16_t hci_index = 0; static bool client_active = false; static bool debug_enabled = false; static void hexdump_print(const char *str, void *user_data) { printf("%s%s\n", (char *) user_data, str); } struct proxy { /* Receive commands, ACL and SCO data */ int host_fd; uint8_t host_buf[4096]; uint16_t host_len; bool host_shutdown; /* Receive events, ACL and SCO data */ int dev_fd; uint8_t dev_buf[4096]; uint16_t dev_len; bool dev_shutdown; }; static bool write_packet(int fd, const void *data, size_t size, void *user_data) { while (size > 0) { ssize_t written; written = write(fd, data, size); if (written < 0) { if (errno == EAGAIN || errno == EINTR) continue; return false; } if (debug_enabled) util_hexdump('<', data, written, hexdump_print, user_data); data += written; size -= written; } return true; } static void host_read_destroy(void *user_data) { struct proxy *proxy = user_data; printf("Closing host descriptor\n"); if (proxy->host_shutdown) shutdown(proxy->host_fd, SHUT_RDWR); close(proxy->host_fd); proxy->host_fd = -1; if (proxy->dev_fd < 0) { client_active = false; free(proxy); } else mainloop_remove_fd(proxy->dev_fd); } static void host_read_callback(int fd, uint32_t events, void *user_data) { struct proxy *proxy = user_data; struct bt_hci_cmd_hdr *cmd_hdr; struct bt_hci_acl_hdr *acl_hdr; struct bt_hci_sco_hdr *sco_hdr; ssize_t len; uint16_t pktlen; if (events & (EPOLLERR | EPOLLHUP)) { fprintf(stderr, "Error from host descriptor\n"); mainloop_remove_fd(proxy->host_fd); return; } if (events & EPOLLRDHUP) { fprintf(stderr, "Remote hangup of host descriptor\n"); mainloop_remove_fd(proxy->host_fd); return; } len = read(proxy->host_fd, proxy->host_buf + proxy->host_len, sizeof(proxy->host_buf) - proxy->host_len); if (len < 0) { if (errno == EAGAIN || errno == EINTR) return; fprintf(stderr, "Read from host descriptor failed\n"); mainloop_remove_fd(proxy->host_fd); return; } if (debug_enabled) util_hexdump('>', proxy->host_buf + proxy->host_len, len, hexdump_print, "H: "); proxy->host_len += len; process_packet: if (proxy->host_len < 1) return; switch (proxy->host_buf[0]) { case BT_H4_CMD_PKT: if (proxy->host_len < 1 + sizeof(*cmd_hdr)) return; cmd_hdr = (void *) (proxy->host_buf + 1); pktlen = 1 + sizeof(*cmd_hdr) + cmd_hdr->plen; break; case BT_H4_ACL_PKT: if (proxy->host_len < 1 + sizeof(*acl_hdr)) return; acl_hdr = (void *) (proxy->host_buf + 1); pktlen = 1 + sizeof(*acl_hdr) + cpu_to_le16(acl_hdr->dlen); break; case BT_H4_SCO_PKT: if (proxy->host_len < 1 + sizeof(*sco_hdr)) return; sco_hdr = (void *) (proxy->host_buf + 1); pktlen = 1 + sizeof(*sco_hdr) + sco_hdr->dlen; break; case 0xff: /* Notification packet from /dev/vhci - ignore */ proxy->host_len = 0; return; default: fprintf(stderr, "Received unknown host packet type 0x%02x\n", proxy->host_buf[0]); mainloop_remove_fd(proxy->host_fd); return; } if (proxy->host_len < pktlen) return; if (!write_packet(proxy->dev_fd, proxy->host_buf, pktlen, "D: ")) { fprintf(stderr, "Write to device descriptor failed\n"); mainloop_remove_fd(proxy->dev_fd); return; } if (proxy->host_len > pktlen) { memmove(proxy->host_buf, proxy->host_buf + pktlen, proxy->host_len - pktlen); proxy->host_len -= pktlen; goto process_packet; } proxy->host_len = 0; } static void dev_read_destroy(void *user_data) { struct proxy *proxy = user_data; printf("Closing device descriptor\n"); if (proxy->dev_shutdown) shutdown(proxy->dev_fd, SHUT_RDWR); close(proxy->dev_fd); proxy->dev_fd = -1; if (proxy->host_fd < 0) { client_active = false; free(proxy); } else mainloop_remove_fd(proxy->host_fd); } static void dev_read_callback(int fd, uint32_t events, void *user_data) { struct proxy *proxy = user_data; struct bt_hci_evt_hdr *evt_hdr; struct bt_hci_acl_hdr *acl_hdr; struct bt_hci_sco_hdr *sco_hdr; ssize_t len; uint16_t pktlen; if (events & (EPOLLERR | EPOLLHUP)) { fprintf(stderr, "Error from device descriptor\n"); mainloop_remove_fd(proxy->dev_fd); return; } if (events & EPOLLRDHUP) { fprintf(stderr, "Remote hangup of device descriptor\n"); mainloop_remove_fd(proxy->host_fd); return; } len = read(proxy->dev_fd, proxy->dev_buf + proxy->dev_len, sizeof(proxy->dev_buf) - proxy->dev_len); if (len < 0) { if (errno == EAGAIN || errno == EINTR) return; fprintf(stderr, "Read from device descriptor failed\n"); mainloop_remove_fd(proxy->dev_fd); return; } if (debug_enabled) util_hexdump('>', proxy->dev_buf + proxy->dev_len, len, hexdump_print, "D: "); proxy->dev_len += len; process_packet: if (proxy->dev_len < 1) return; switch (proxy->dev_buf[0]) { case BT_H4_EVT_PKT: if (proxy->dev_len < 1 + sizeof(*evt_hdr)) return; evt_hdr = (void *) (proxy->dev_buf + 1); pktlen = 1 + sizeof(*evt_hdr) + evt_hdr->plen; break; case BT_H4_ACL_PKT: if (proxy->dev_len < 1 + sizeof(*acl_hdr)) return; acl_hdr = (void *) (proxy->dev_buf + 1); pktlen = 1 + sizeof(*acl_hdr) + cpu_to_le16(acl_hdr->dlen); break; case BT_H4_SCO_PKT: if (proxy->dev_len < 1 + sizeof(*sco_hdr)) return; sco_hdr = (void *) (proxy->dev_buf + 1); pktlen = 1 + sizeof(*sco_hdr) + sco_hdr->dlen; break; default: fprintf(stderr, "Received unknown device packet type 0x%02x\n", proxy->dev_buf[0]); mainloop_remove_fd(proxy->dev_fd); return; } if (proxy->dev_len < pktlen) return; if (!write_packet(proxy->host_fd, proxy->dev_buf, pktlen, "H: ")) { fprintf(stderr, "Write to host descriptor failed\n"); mainloop_remove_fd(proxy->host_fd); return; } if (proxy->dev_len > pktlen) { memmove(proxy->dev_buf, proxy->dev_buf + pktlen, proxy->dev_len - pktlen); proxy->dev_len -= pktlen; goto process_packet; } proxy->dev_len = 0; } static bool setup_proxy(int host_fd, bool host_shutdown, int dev_fd, bool dev_shutdown) { struct proxy *proxy; proxy = new0(struct proxy, 1); if (!proxy) return NULL; proxy->host_fd = host_fd; proxy->host_shutdown = host_shutdown; proxy->dev_fd = dev_fd; proxy->dev_shutdown = dev_shutdown; mainloop_add_fd(proxy->host_fd, EPOLLIN | EPOLLRDHUP, host_read_callback, proxy, host_read_destroy); mainloop_add_fd(proxy->dev_fd, EPOLLIN | EPOLLRDHUP, dev_read_callback, proxy, dev_read_destroy); return true; } static int open_channel(uint16_t index) { struct sockaddr_hci addr; int fd; printf("Opening user channel for hci%u\n", hci_index); fd = socket(PF_BLUETOOTH, SOCK_RAW | SOCK_CLOEXEC, BTPROTO_HCI); if (fd < 0) { perror("Failed to open Bluetooth socket"); return -1; } memset(&addr, 0, sizeof(addr)); addr.hci_family = AF_BLUETOOTH; addr.hci_dev = index; addr.hci_channel = HCI_CHANNEL_USER; if (bind(fd, (struct sockaddr *) &addr, sizeof(addr)) < 0) { close(fd); perror("Failed to bind Bluetooth socket"); return -1; } return fd; } static void server_callback(int fd, uint32_t events, void *user_data) { union { struct sockaddr common; struct sockaddr_un sun; struct sockaddr_in sin; } addr; socklen_t len; int host_fd, dev_fd; if (events & (EPOLLERR | EPOLLHUP)) { mainloop_quit(); return; } memset(&addr, 0, sizeof(addr)); len = sizeof(addr); if (getsockname(fd, &addr.common, &len) < 0) { perror("Failed to get socket name"); return; } host_fd = accept(fd, &addr.common, &len); if (host_fd < 0) { perror("Failed to accept client socket"); return; } if (client_active) { fprintf(stderr, "Active client already present\n"); close(host_fd); return; } dev_fd = open_channel(hci_index); if (dev_fd < 0) { close(host_fd); return; } printf("New client connected\n"); if (!setup_proxy(host_fd, true, dev_fd, false)) { close(dev_fd); close(host_fd); return; } client_active = true; } static int open_unix(const char *path) { struct sockaddr_un addr; int fd; unlink(path); fd = socket(PF_UNIX, SOCK_STREAM | SOCK_CLOEXEC, 0); if (fd < 0) { perror("Failed to open Unix server socket"); return -1; } memset(&addr, 0, sizeof(addr)); addr.sun_family = AF_UNIX; strcpy(addr.sun_path, path); if (bind(fd, (struct sockaddr *) &addr, sizeof(addr)) < 0) { perror("Failed to bind Unix server socket"); close(fd); return -1; } if (listen(fd, 1) < 0) { perror("Failed to listen Unix server socket"); close(fd); return -1; } if (chmod(path, 0666) < 0) perror("Failed to change mode"); return fd; } static int open_tcp(const char *address, unsigned int port) { struct sockaddr_in addr; int fd, opt = 1; fd = socket(PF_INET, SOCK_STREAM | SOCK_CLOEXEC, 0); if (fd < 0) { perror("Failed to open TCP server socket"); return -1; } setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt)); memset(&addr, 0, sizeof(addr)); addr.sin_family = AF_INET; addr.sin_addr.s_addr = inet_addr(address); addr.sin_port = htons(port); if (bind(fd, (struct sockaddr *) &addr, sizeof(addr)) < 0) { perror("Failed to bind TCP server socket"); close(fd); return -1; } if (listen(fd, 1) < 0) { perror("Failed to listen TCP server socket"); close(fd); return -1; } return fd; } static int connect_tcp(const char *address, unsigned int port) { struct sockaddr_in addr; int fd; fd = socket(PF_INET, SOCK_STREAM | SOCK_CLOEXEC, 0); if (fd < 0) { perror("Failed to open TCP client socket"); return -1; } memset(&addr, 0, sizeof(addr)); addr.sin_family = AF_INET; addr.sin_addr.s_addr = inet_addr(address); addr.sin_port = htons(port); if (connect(fd, (struct sockaddr *) &addr, sizeof(addr)) < 0) { perror("Failed to connect TCP client socket"); close(fd); return -1; } return fd; } static int open_vhci(uint8_t type) { uint8_t create_req[2] = { 0xff, type }; ssize_t written; int fd; fd = open("/dev/vhci", O_RDWR | O_CLOEXEC); if (fd < 0) { perror("Failed to open /dev/vhci device"); return -1; } written = write(fd, create_req, sizeof(create_req)); if (written < 0) { perror("Failed to set device type"); close(fd); return -1; } return fd; } static void signal_callback(int signum, void *user_data) { switch (signum) { case SIGINT: case SIGTERM: mainloop_quit(); break; } } static void usage(void) { printf("btproxy - Bluetooth controller proxy\n" "Usage:\n"); printf("\tbtproxy [options]\n"); printf("Options:\n" "\t-c, --connect
Connect to server\n" "\t-l, --listen [address] Use TCP server\n" "\t-u, --unix [path] Use Unix server\n" "\t-p, --port Use specified TCP port\n" "\t-i, --index Use specified controller\n" "\t-d, --debug Enable debugging output\n" "\t-h, --help Show help options\n"); } static const struct option main_options[] = { { "connect", required_argument, NULL, 'c' }, { "listen", optional_argument, NULL, 'l' }, { "unix", optional_argument, NULL, 'u' }, { "port", required_argument, NULL, 'p' }, { "index", required_argument, NULL, 'i' }, { "debug", no_argument, NULL, 'd' }, { "version", no_argument, NULL, 'v' }, { "help", no_argument, NULL, 'h' }, { } }; int main(int argc, char *argv[]) { const char *connect_address = NULL; const char *server_address = NULL; const char *unix_path = NULL; unsigned short tcp_port = 0xb1ee; /* 45550 */ const char *str; sigset_t mask; for (;;) { int opt; opt = getopt_long(argc, argv, "c:l::u::p:i:dvh", main_options, NULL); if (opt < 0) break; switch (opt) { case 'c': connect_address = optarg; break; case 'l': if (optarg) server_address = optarg; else server_address = "0.0.0.0"; break; case 'u': if (optarg) unix_path = optarg; else unix_path = "/tmp/bt-server-bredr"; break; case 'p': tcp_port = atoi(optarg); break; case 'i': if (strlen(optarg) > 3 && !strncmp(optarg, "hci", 3)) str = optarg + 3; else str = optarg; if (!isdigit(*str)) { usage(); return EXIT_FAILURE; } hci_index = atoi(str); break; case 'd': debug_enabled = true; break; case 'v': printf("%s\n", VERSION); return EXIT_SUCCESS; case 'h': usage(); return EXIT_SUCCESS; default: return EXIT_FAILURE; } } if (argc - optind > 0) { fprintf(stderr, "Invalid command line parameters\n"); return EXIT_FAILURE; } if (unix_path && server_address) { fprintf(stderr, "Invalid to specify TCP and Unix servers\n"); return EXIT_FAILURE; } if (connect_address && (unix_path || server_address)) { fprintf(stderr, "Invalid to specify client and server mode\n"); return EXIT_FAILURE; } mainloop_init(); sigemptyset(&mask); sigaddset(&mask, SIGINT); sigaddset(&mask, SIGTERM); mainloop_set_signal(&mask, signal_callback, NULL, NULL); if (connect_address) { int host_fd, dev_fd; printf("Connecting to %s:%u\n", connect_address, tcp_port); dev_fd = connect_tcp(connect_address, tcp_port); if (dev_fd < 0) return EXIT_FAILURE; printf("Opening virtual device\n"); host_fd = open_vhci(0x00); if (host_fd < 0) { close(dev_fd); return EXIT_FAILURE; } if (!setup_proxy(host_fd, false, dev_fd, true)) return EXIT_FAILURE; } else { int server_fd; if (unix_path) { printf("Listening on %s\n", unix_path); server_fd = open_unix(unix_path); } else if (server_address) { printf("Listening on %s:%u\n", server_address, tcp_port); server_fd = open_tcp(server_address, tcp_port); } else { fprintf(stderr, "Missing emulator device\n"); return EXIT_FAILURE; } if (server_fd < 0) return EXIT_FAILURE; mainloop_add_fd(server_fd, EPOLLIN, server_callback, NULL, NULL); } return mainloop_run(); }