bluez/tools/bluemoon.c

542 lines
12 KiB
C
Raw Normal View History

/*
*
* BlueZ - Bluetooth protocol stack for Linux
*
* Copyright (C) 2012 Intel Corporation. All rights reserved.
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <getopt.h>
#include "monitor/mainloop.h"
#include "monitor/bt.h"
#include "src/shared/util.h"
#include "src/shared/hci.h"
#define CMD_READ_VERSION 0xfc05
struct rsp_read_version {
uint8_t status;
uint8_t hw_platform;
uint8_t hw_variant;
uint8_t hw_revision;
uint8_t fw_variant;
uint8_t fw_revision;
uint8_t fw_build_nn;
uint8_t fw_build_cw;
uint8_t fw_build_yy;
uint8_t fw_patch;
} __attribute__ ((packed));
#define CMD_MANUFACTURER_MODE 0xfc11
struct cmd_manufacturer_mode {
uint8_t mode_switch;
uint8_t reset;
} __attribute__ ((packed));
#define CMD_WRITE_BD_DATA 0xfc2f
struct cmd_write_bd_data {
uint8_t bdaddr[6];
uint8_t reserved1[6];
uint8_t features[8];
uint8_t le_features;
uint8_t reserved2[32];
uint8_t lmp_version;
uint8_t reserved3[26];
} __attribute__ ((packed));
#define CMD_READ_BD_DATA 0xfc30
struct rsp_read_bd_data {
uint8_t status;
uint8_t bdaddr[6];
uint8_t reserved1[6];
uint8_t features[8];
uint8_t le_features;
uint8_t reserved2[32];
uint8_t lmp_version;
uint8_t reserved3[26];
} __attribute__ ((packed));
#define CMD_WRITE_BD_ADDRESS 0xfc31
struct cmd_write_bd_address {
uint8_t bdaddr[6];
} __attribute__ ((packed));
#define CMD_ACT_DEACT_TRACES 0xfc43
struct cmd_act_deact_traces {
uint8_t tx_trace;
uint8_t tx_arq;
uint8_t rx_trace;
} __attribute__ ((packed));
static struct bt_hci *hci_dev;
static uint16_t hci_index = 0;
static bool set_bdaddr = false;
static const char *set_bdaddr_value = NULL;
static bool reset_on_exit = false;
static bool use_manufacturer_mode = false;
static bool get_bddata = false;
static bool set_traces = false;
static void reset_complete(const void *data, uint8_t size, void *user_data)
{
uint8_t status = *((uint8_t *) data);
if (status) {
fprintf(stderr, "Failed to reset (0x%02x)\n", status);
mainloop_quit();
return;
}
mainloop_quit();
}
static void leave_manufacturer_mode_complete(const void *data, uint8_t size,
void *user_data)
{
uint8_t status = *((uint8_t *) data);
if (status) {
fprintf(stderr, "Failed to leave manufacturer mode (0x%02x)\n",
status);
mainloop_quit();
return;
}
if (reset_on_exit) {
bt_hci_send(hci_dev, BT_HCI_CMD_RESET, NULL, 0,
reset_complete, NULL, NULL);
return;
}
mainloop_quit();
}
static void shutdown_device(void)
{
bt_hci_flush(hci_dev);
if (use_manufacturer_mode) {
struct cmd_manufacturer_mode cmd;
cmd.mode_switch = 0x00;
cmd.reset = 0x00;
bt_hci_send(hci_dev, CMD_MANUFACTURER_MODE, &cmd, sizeof(cmd),
leave_manufacturer_mode_complete, NULL, NULL);
return;
}
if (reset_on_exit) {
bt_hci_send(hci_dev, BT_HCI_CMD_RESET, NULL, 0,
reset_complete, NULL, NULL);
return;
}
mainloop_quit();
}
static void write_bd_address_complete(const void *data, uint8_t size,
void *user_data)
{
uint8_t status = *((uint8_t *) data);
if (status) {
fprintf(stderr, "Failed to write address (0x%02x)\n", status);
mainloop_quit();
return;
}
shutdown_device();
}
static void read_bd_addr_complete(const void *data, uint8_t size,
void *user_data)
{
const struct bt_hci_rsp_read_bd_addr *rsp = data;
struct cmd_write_bd_address cmd;
if (rsp->status) {
fprintf(stderr, "Failed to read address (0x%02x)\n",
rsp->status);
mainloop_quit();
shutdown_device();
return;
}
if (set_bdaddr_value) {
fprintf(stderr, "Setting address is not supported\n");
mainloop_quit();
return;
}
printf("Controller Address\n");
printf("\tOld BD_ADDR: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
rsp->bdaddr[5], rsp->bdaddr[4],
rsp->bdaddr[3], rsp->bdaddr[2],
rsp->bdaddr[1], rsp->bdaddr[0]);
memcpy(cmd.bdaddr, rsp->bdaddr, 6);
cmd.bdaddr[0] = (hci_index & 0xff);
printf("\tNew BD_ADDR: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
cmd.bdaddr[5], cmd.bdaddr[4],
cmd.bdaddr[3], cmd.bdaddr[2],
cmd.bdaddr[1], cmd.bdaddr[0]);
bt_hci_send(hci_dev, CMD_WRITE_BD_ADDRESS, &cmd, sizeof(cmd),
write_bd_address_complete, NULL, NULL);
}
static void act_deact_traces_complete(const void *data, uint8_t size,
void *user_data)
{
uint8_t status = *((uint8_t *) data);
if (status) {
fprintf(stderr, "Failed to activate traces (0x%02x)\n", status);
shutdown_device();
return;
}
shutdown_device();
}
static void act_deact_traces(void)
{
struct cmd_act_deact_traces cmd;
cmd.tx_trace = 0x03;
cmd.tx_arq = 0x03;
cmd.rx_trace = 0x03;
bt_hci_send(hci_dev, CMD_ACT_DEACT_TRACES, &cmd, sizeof(cmd),
act_deact_traces_complete, NULL, NULL);
}
static void write_bd_data_complete(const void *data, uint8_t size,
void *user_data)
{
uint8_t status = *((uint8_t *) data);
if (status) {
fprintf(stderr, "Failed to write data (0x%02x)\n", status);
shutdown_device();
return;
}
if (set_traces) {
act_deact_traces();
return;
}
shutdown_device();
}
static void read_bd_data_complete(const void *data, uint8_t size,
void *user_data)
{
const struct rsp_read_bd_data *rsp = data;
if (rsp->status) {
fprintf(stderr, "Failed to read data (0x%02x)\n", rsp->status);
shutdown_device();
return;
}
printf("Controller Data\n");
printf("\tBD_ADDR: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
rsp->bdaddr[5], rsp->bdaddr[4],
rsp->bdaddr[3], rsp->bdaddr[2],
rsp->bdaddr[1], rsp->bdaddr[0]);
printf("\tLMP Version: %u\n", rsp->lmp_version);
printf("\tLMP Features: 0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x"
" 0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x\n",
rsp->features[0], rsp->features[1],
rsp->features[2], rsp->features[3],
rsp->features[4], rsp->features[5],
rsp->features[6], rsp->features[7]);
printf("\tLE Features: 0x%2.2x\n", rsp->le_features);
if (set_bdaddr) {
struct cmd_write_bd_data cmd;
memcpy(cmd.bdaddr, rsp->bdaddr, 6);
cmd.bdaddr[0] = (hci_index & 0xff);
cmd.lmp_version = 0x07;
memcpy(cmd.features, rsp->features, 8);
cmd.le_features = rsp->le_features;
cmd.le_features |= 0x1e;
memcpy(cmd.reserved1, rsp->reserved1, sizeof(cmd.reserved1));
memcpy(cmd.reserved2, rsp->reserved2, sizeof(cmd.reserved2));
memcpy(cmd.reserved3, rsp->reserved3, sizeof(cmd.reserved3));
bt_hci_send(hci_dev, CMD_WRITE_BD_DATA, &cmd, sizeof(cmd),
write_bd_data_complete, NULL, NULL);
return;
}
shutdown_device();
}
static void enter_manufacturer_mode_complete(const void *data, uint8_t size,
void *user_data)
{
uint8_t status = *((uint8_t *) data);
if (status) {
fprintf(stderr, "Failed to enter manufacturer mode (0x%02x)\n",
status);
mainloop_quit();
return;
}
if (get_bddata || set_bdaddr) {
bt_hci_send(hci_dev, CMD_READ_BD_DATA, NULL, 0,
read_bd_data_complete, NULL, NULL);
return;
}
if (set_traces) {
act_deact_traces();
return;
}
shutdown_device();
}
static void read_version_complete(const void *data, uint8_t size,
void *user_data)
{
const struct rsp_read_version *rsp = data;
const char *str;
if (rsp->status) {
fprintf(stderr, "Failed to read version (0x%02x)\n",
rsp->status);
mainloop_quit();
return;
}
if (use_manufacturer_mode) {
struct cmd_manufacturer_mode cmd;
cmd.mode_switch = 0x01;
cmd.reset = 0x00;
bt_hci_send(hci_dev, CMD_MANUFACTURER_MODE, &cmd, sizeof(cmd),
enter_manufacturer_mode_complete, NULL, NULL);
return;
}
if (set_bdaddr) {
bt_hci_send(hci_dev, BT_HCI_CMD_READ_BD_ADDR, NULL, 0,
read_bd_addr_complete, NULL, NULL);
return;
}
printf("Controller Version Information\n");
printf("\tHardware Platform:\t%u\n", rsp->hw_platform);
switch (rsp->hw_variant) {
case 0x07:
str = "iBT 2.0";
break;
default:
str = "Reserved";
break;
}
printf("\tHardware Variant:\t%s (0x%02x)\n", str, rsp->hw_variant);
printf("\tHardware Revision:\t%u.%u\n", rsp->hw_revision >> 4,
rsp->hw_revision & 0x0f);
switch (rsp->fw_variant) {
case 0x01:
str = "BT IP 4.0";
break;
case 0x06:
str = "iBT Bootloader";
break;
default:
str = "Reserved";
break;
}
printf("\tFirmware Variant:\t%s (0x%02x)\n", str, rsp->fw_variant);
printf("\tFirmware Revision:\t%u.%u\n", rsp->fw_revision >> 4,
rsp->fw_revision & 0x0f);
printf("\tFirmware Build Number:\t%u-%u.%u\n", rsp->fw_build_nn,
rsp->fw_build_cw, 2000 + rsp->fw_build_yy);
printf("\tFirmware Patch Number:\t%u\n", rsp->fw_patch);
mainloop_quit();
}
static void read_local_version_complete(const void *data, uint8_t size,
void *user_data)
{
const struct bt_hci_rsp_read_local_version *rsp = data;
uint16_t manufacturer;
if (rsp->status) {
fprintf(stderr, "Failed to read local version (0x%02x)\n",
rsp->status);
mainloop_quit();
return;
}
manufacturer = le16_to_cpu(rsp->manufacturer);
if (manufacturer != 2) {
fprintf(stderr, "Unsupported manufacturer (%u)\n",
manufacturer);
mainloop_quit();
return;
}
bt_hci_send(hci_dev, CMD_READ_VERSION, NULL, 0,
read_version_complete, NULL, NULL);
}
static void signal_callback(int signum, void *user_data)
{
switch (signum) {
case SIGINT:
case SIGTERM:
mainloop_quit();
break;
}
}
static void usage(void)
{
printf("bluemoon - Bluemoon configuration utility\n"
"Usage:\n");
printf("\tbluemoon [options]\n");
printf("Options:\n"
"\t-B, --bdaddr [addr] Set Bluetooth address\n"
"\t-R, --reset Reset controller\n"
"\t-i, --index <num> Use specified controller\n"
"\t-h, --help Show help options\n");
}
static const struct option main_options[] = {
{ "bdaddr", optional_argument, NULL, 'A' },
{ "bddata", no_argument, NULL, 'D' },
{ "traces", no_argument, NULL, 'T' },
{ "reset", no_argument, NULL, 'R' },
{ "index", required_argument, NULL, 'i' },
{ "version", no_argument, NULL, 'v' },
{ "help", no_argument, NULL, 'h' },
{ }
};
int main(int argc, char *argv[])
{
const char *str;
sigset_t mask;
int exit_status;
for (;;) {
int opt;
opt = getopt_long(argc, argv, "A::DTRi:vh", main_options, NULL);
if (opt < 0)
break;
switch (opt) {
case 'A':
if (optarg)
set_bdaddr_value = optarg;
set_bdaddr = true;
break;
case 'D':
use_manufacturer_mode = true;
get_bddata = true;
break;
case 'T':
use_manufacturer_mode = true;
set_traces = true;
break;
case 'R':
reset_on_exit = true;
break;
case 'i':
if (strlen(optarg) > 3 && !strncmp(optarg, "hci", 3))
str = optarg + 3;
else
str = optarg;
if (!isdigit(*str)) {
usage();
return EXIT_FAILURE;
}
hci_index = atoi(str);
break;
case 'v':
printf("%s\n", VERSION);
return EXIT_SUCCESS;
case 'h':
usage();
return EXIT_SUCCESS;
default:
return EXIT_FAILURE;
}
}
if (argc - optind > 0) {
fprintf(stderr, "Invalid command line parameters\n");
return EXIT_FAILURE;
}
mainloop_init();
sigemptyset(&mask);
sigaddset(&mask, SIGINT);
sigaddset(&mask, SIGTERM);
mainloop_set_signal(&mask, signal_callback, NULL, NULL);
printf("Bluemoon configuration utility ver %s\n", VERSION);
hci_dev = bt_hci_new_user_channel(hci_index);
if (!hci_dev) {
fprintf(stderr, "Failed to open HCI user channel\n");
return EXIT_FAILURE;
}
bt_hci_send(hci_dev, BT_HCI_CMD_READ_LOCAL_VERSION, NULL, 0,
read_local_version_complete, NULL, NULL);
exit_status = mainloop_run();
bt_hci_unref(hci_dev);
return exit_status;
}